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A Survey of Techniques for Optimizing Deep
Learning on GPUs

Sparsh Mittal and Shraiysh Vaishay
Department of Computer Science and Engineering, IIT Hyderabad, India.

E-mail:{sparsh,cs17btech11050}@iith.ac.in.

Abstract

The rise of deep-learning (DL) has been fuelled by the improvements in accelerators. Due to its unique
features, the GPU continues to remain the most widely used accelerator for DL applications. In this paper,
we present a survey of architecture and system-level techniques for optimizing DL applications on GPUs. We
review techniques for both inference and training and for both single GPU and distributed system with multiple
GPUs. We bring out the similarities and differences of different works and highlight their key attributes. This
survey will be useful for both novice and experts in the field of machine learning, processor architecture and
high-performance computing.

Index Terms

Review, GPU, hardware architecture for deep learning, accelerator, distributed training, parameter server,
allreduce, pruning, tiling.

F

1 INTRODUCTION

The rise of deep-learning has been fuelled by the improvements in accelerators. Even though many
FPGA/ASIC1-based custom-accelerators have been recently introduced, GPU continues to remain the most
widely used accelerator for DL training/testing, for several reasons. High-level programming languages
such as CUDA make GPU easier to program than FPGA, and the programmable architecture of GPU
makes it useful for a wider range of DL applications than ASIC. High performance of GPU, continued
improvements in its architecture and software-stack, its availability in cloud/data-centers and a large
user-base make GPU a universal accelerator for DL applications [1].

“Accelerating DL models” is, however, akin to chasing a moving target. As DL models are becoming
more pervasive and accurate, their compute and memory requirements are growing tremendously and
are likely to outpace the improvements in GPU resources and performance. For example, training DNNs
takes a huge amount of time, e.g., 100-epoch training of ResNet-50 on ImageNet dataset on one M40 GPU
requires 14 days [2]. To reduce the training time, researchers have used clusters with hundreds of GPUs;
however, achieving high resource utilization efficiency and reducing communication overhead is vital

• This work was supported in part by “Semiconductor Research Corporation” (SRC).

1. We use the following acronyms frequently in this paper: application-specific integrated circuit (ASIC), backward/forward
propagation (FWP/BWP), bandwidth (BW), batch normalization (BN), compressed sparse row (CSR), convolution (CONV),
convolution/deep/recurrent neural network (CNN/DNN/RNN), cooperative thread arrays (CTAs), deep learning (DL), direct
memory access (DMA), fast Fourier transform (FFT), feature extraction (FE), feature map (fmap), field programmable gate array
(FPGA), fully-connected (FC), generalized matrix multiplication (GEMM), global memory (GlM), instruction/memory/thread-
level parallelism (ILP/MLP/TLP), least/most significant bit (LSB/MSB), local response normalization (LRN), matrix multiplica-
tion (MM), parameter server (PS), peripheral component interconnect express (PCIe), register file (RF), shared memory (ShM),
single instruction multiple data (SIMD), streaming multiprocessor (SM)
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for achieving proportionate gains in performance. Similarly, during inference, meeting the latency targets
while achieving high data-reuse and throughput is a major challenge.

Evidently, tackling these challenges will require optimizations at multiple levels such as microarchitec-
ture, programming-language, system, and cluster-level. Further, due to the unique architecture of GPU [3],
a straightforward implementation of even well-known optimization techniques such as pruning, batching,
tiling, etc. is unlikely to provide high performance [4, 5]. Hence, an adaptation of these techniques to
GPU architecture is required for reaping their full potential. Similarly, to leverage large-scale GPU-based
clusters for DNN training, the challenges of distributed computing need to be mitigated. Many recent
research projects aim at addressing these challenges.

Contributions: In this paper, we present a survey of techniques for optimizing deep-learning appli-
cations on GPUs. Figure 1 provides an overview of this paper. Section 2 classifies the research projects
on several key metrics. Section 3 reviews techniques for optimizing CNNs on a single GPU. Section 4
summarizes works that optimize training on a distributed system with multiple GPUs. These sections
are further divided into several parts, and although we summarize a technique at only one place, most
techniques span across categories. In these sections, we also provide the background on relevant concepts.

§2 Classification

§2.1 Based on evaluation platform/approach

§2.2 Based on compute and memory-related 

optimizations

§2.3 Based on CNN layer-specific optimizations 
§4.1 Using parameter server approach

§4.2 Using the host for performing gradient 

accumulation               

§4.3 Using allreduce approach                       

§4.4 Using mixed-precision approach                     

§4.5 Using pipeline-parallel training scheme

§4.6 Designing schedulers for DL training

§4.7 Using transient servers in the cloud for 

reducing the financial cost of training          

§4.8 Comparison with CPU/Phi

Paper organization

§5 Concluding remarks

§3.1 Getting insights into CNN and GPU 

architecture  

§3.2 Impact of convolution strategy  

§3.3 Optimizing Winograd CONV                      

§3.4 Optimizing data-layouts                       

§3.5 Optimizing data reuse                        

§3.6 Optimizing tiling and batching schemes           

§3.7 Optimizing pruning schemes 

§4 Optimizing DL on distributed GPUs

§3 Optimizing DL on a single GPU

§3.8 Coalescing and scheduling GPU kernels 

§3.9 Mitigating GPU memory limitations by 

offloading data to CPU Memory

Fig. 1. Organization of the paper

Scope: For the sake of a focused presentation, we limit the scope of this paper as follows. We review
works that optimize GPU architecture to match the characteristics of DL applications and the works that
adapt DL applications to get maximum performance from GPU. In other words, we include the works
that co-optimize GPU architecture and DL applications. We do not include the works that focus on GPU-
optimizations for conventional applications, or hardware-unaware optimizations to DL applications. We
include the works that perform experiments using desktop/server-scale GPUs and not mobile GPUs [6].

2 CLASSIFICATION

2.1 Based on evaluation platform/approach
Table 1 classifies the research works based on several categories. It first shows the neural network models
and the DL phases (inference or training) which have been optimized. Then, it summarizes the DL
framework and the GPU model used by different works. Finally, it highlights the works that compare
GPU with other platforms and those that perform “CPU-GPU heterogeneous computing” to bring the
best of both CPU and GPU together.

2.2 Based on compute and memory-related optimizations
Unlike CPUs, GPUs do not have large-size caches. Also, each GPU core is simpler and runs at a lower
frequency. Hence, their single-thread performance is much lower than that of CPUs. Since GPUs are
throughput-oriented processors, achieving large performance on GPUs requires exploiting its massive-
multithreaded architecture and complex memory hierarchy [64, 65]. Table 2 shows the compute-related
bottlenecks in different works along with the optimizations used by them. For example, pipelining
overlaps computations with data-communication to hide communication latency. In GPUs, all threads
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TABLE 1
A classification based on context and evaluation

Category References
NN architecture

RNN [7, 8]
CNN nearly all others

Machine learning phase evaluated/optimized
Inference [5, 8–22]
Training [4, 5, 7, 9–12, 16, 19, 21, 23–51, 51–58]

Framework/library used for evaluation or comparison
cuDNN [4, 8, 9, 11, 17–20, 23, 24, 27, 31–34, 36, 39, 42, 44, 54, 59]
cuBLAS [14, 18, 27, 54, 59]
Caffe [7, 11, 13, 14, 18, 19, 21–23, 25, 28, 29, 40, 41, 47, 49, 52, 55, 57, 58]
TensorFlow [8, 19, 21, 28, 30, 35, 38, 41, 43, 51, 53]
PyTorch [28, 37, 38]
MPI [37, 43, 56]
NCCL [37, 43]
Others MAGMA [5, 12, 13, 60], TensorRT [8], NERVANA [18], cuSPARSE [14], clBLAS

[33], MXNet [21]
GPU make

AMD Radeon Fury X [29], FirePro W7100 [29], W8000 [33]

NVIDIA nearly all others
GPU model used

Fermi GTX 480 [10, 16], M2050 [52]
Maxwell GTX Titan X [4, 10, 17, 18, 24, 44, 52], GTX 750Ti [41], GTX 970m [18], GTX 980

[9, 20], M40 [35, 46]
Kepler GTX 680 [16], K20 [16, 48], K20C [7, 18, 49, 52], K20m [59], K40 [9, 25, 27–29],

K40c [23], K40m [12, 22, 26, 36, 45], K80 [19, 25, 30, 41, 46, 47, 53], GTX Titan
Black [11]

Pascal Titan X (Pascal) [13, 31], GTX 1080 [27], GTX 1080Ti [14, 34], P40 [38, 43], P100
[14, 25, 30–32, 37–41, 50, 55, 58, 60]

Volta Titan V [8], V100 [5, 21, 30, 31, 37, 40–42, 44, 56, 61, 62]
Comparative and collaborative evaluation

Comparison of GPU architectures [21, 27]
Comparison of GPU with CPU [17, 19, 22, 25, 60, 63], Xeon Phi [33, 46]
CPU-GPU heterogeneous computing [17, 22, 39]

of a warp execute the same instruction. If different threads of a warp take different paths of an if
condition, then both true and false paths are serially executed such that only one set of the threads remain
active at a time. This branch divergence leads to performance loss, and several works propose solutions
for this issue, as shown in Table 2. Kernel fusion allows doing all the computations on a piece of data
before sending it to off-chip memory. This increases the opportunities for data-reuse. Some other works
use loop unrolling, perform scheduling and resource-management for GPU kernels, and optimize costly
mathematical operations.

Table 3 discusses memory-related performance-issues and optimization schemes. In GPUs, GlM access
efficiency is high if the accesses are coalesced. ShM access efficiency is high when there are no bank
conflicts. An exception to this is when all threads of a warp access the same address. In this case, a
broadcast operation is performed and no bank-conflict happens. The access efficiency of constant memory
is high if all threads of a warp access the same address.

Table 3 also shows the strategies for reducing the memory capacity requirement and memory accesses
of a CNN. Tiling reduces the effective memory footprint so that it can fit in the on-chip memory itself.
Accesses to data without temporal locality can be bypassed from the cache, whereas techniques for
increasing the data-reuse can be employed to serve these requests from on-chip memory.

2.3 Based on CNN layer-specific optimizations

Different layers of a CNN have different architectural properties [27, 67]. For example, while CONV layers
are compute-intensive, FC layers are memory-intensive. Remaining layers have other inefficiencies which
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TABLE 2
A classification of compute-related challenges and optimizations

Compute-related bottlenecks Synchronization barrier between kernels [8], data-dependencies prohibiting paral-
lelization [11], degree of parallelization being low due to small batch size [11]

Pipelining [7, 9, 15, 17, 24, 26, 28, 37, 37, 39, 40, 43–47, 49, 56]
Padding [16, 33]
Loop unrolling [10, 16]
Creating scope for increasing batch
size

by performing gradient aggregation on the host to reduce memory consumption on
GPU [39], by transferring intermediate data from GPU memory to CPU memory [28],
by using low-precision tensors [37], by dividing the image into patches [32], by using
“layer-wise adaptive rate scaling” (LARS) scheme [43]

Avoiding branch-divergence Avoiding condition-check by performing variable increment of program-counter [10],
Grouping threads that perform multiplication on the same input fmap into the same
warp so that all threads in a warp can skip zero-multiplication [10], avoiding irregular
computations by computing the multiplications separately for each non-zero weight
and then adding it [14]

Avoiding thread-idling by using same thread-block size for different tile sizes [5]
Optimizing multiplica-
tions/divisions

Skipping multiplications [10], performing SIMD multiplication (which are more
efficient than scalar multiplications) [4], achieving division operations using multiply
and shift-operations [9]

Kernel-level optimizations kernel-fusion [11, 15, 27], prioritizing/delaying kernel execution [15], adjusting GPU
resources allocated to a kernel [15], compilers for deep-learning [66]

Optimization algo-
rithms/heuristics

Dynamic programming [41, 44], integer linear programming [41], random forest [5],
greedy algorithm [24]

TABLE 3
A classification of memory-related bottlenecks and optimizations

Memory-related bottleneck reasons Uncoalesced accesses in GlM [11, 20], redundant accesses to GlM [11],
bank-conflicts in ShM [11]

Tiling (blocking) [5, 9, 11, 12, 16, 20, 31, 33, 36, 59, 60]
Use of on-chip memory (ShM) for performing reduction operation [11], generating lowered matrix [9]
Use of constant memory for storing input data [14], small filters [12, 33]
Use of texture memory [27]
Avoiding ShM bank-conflicts by using broadcast scheme when all threads access the same address

[12], by using float2 datatype [11, 12]
Use of different memories Storing the data in constant memory in case of single input channel and

in GlM in case of multiple input channels [12]
Avoiding fetching zero-padding data [59], zero weights [10]
L1 cache bypassing [27]
Increasing data-reuse by reordering instructions or computations [10, 59], by increasing the

number of elements computed by each thread [11, 12]
Pruning [4, 13, 14]
Prefetching [12, 34]
Reducing memory requirement by image-splitting [32], reducing batch size [26, 41]
Avoiding the overhead of
cudaMalloc/cudaFree

by allocating a large memory pool only once and then acquir-
ing/releasing memory from this pool [24, 28]

can be mitigated by intelligent techniques. Table 4 shows the works that propose specific optimizations to
different layers of a CNN.

3 OPTIMIZING DL ON A SINGLE GPU
In this section, we review architectural and system-level techniques for optimizing CNNs on a single GPU.
We first review works that explore CNN execution on GPUs (Section 3.1) and study the characteristics of
different CONV strategies (Section 3.2). Then, we review approaches for optimizing Winograd CONV
(Section 3.3), data-layouts in memory (Section 3.4) and schemes for exploiting data-reuse opportunities
(Section 3.5). Further, we discuss techniques for adapting tiling and batching schemes (Section 3.6) and
pruning schemes to GPU architecture (Section 3.7). We also discuss techniques for improving GPU resource
utilization by scheduling and coalescing GPU kernels (Section 3.8). Finally, we review techniques that
utilize CPU memory, in addition to GPU memory, for training CNNs (Section 3.9).
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TABLE 4
A classification based on CNN layer-specific optimizations

Category References
Offloading data of only CONV layers and not FC layers [24, 28]
Ring-based allreduce for CONV layers and hierarchical allreduce for FC layers [43]
Node pruning on CONV layers and SIMD-aware weight pruning on FC layers [4]
Communicating parameters of CONV layers by PS and parameters of FC
layers by either PS or “sufficient-factor broadcasting”

[49]

Executing FC layers in PS and remaining layers in worker GPUs [51]
Use of different batch-size for different layers [41, 52]
CNN layer that is optimized Pooling layer [11, 17], softmax layer [11],

CONV/FC (nearly all others)

3.1 Getting insights into CNN and GPU architecture

Dong et al. [27] execute AlexNet on two different GPUs: a server GPU (Tesla K40 with Kepler architecture)
and a desktop GPU (GTX1080 with Pascal architecture). Performance behavior: They perform experiments
with batch sizes of 16, 64 and 128. They observe that GTX1080 provides higher performance than K40 due
to its higher clock frequency and the larger number of SMs. The speedup is much higher for CONV, FC
and pooling layers than for softmax and activation layers. They also analyze the reasons for the stall in
each layer and find that CONV layers are compute-bound, whereas activation layers are memory-bound.
Both GPUs show increasing throughput with increasing batch size and thus, they show good scalability.

Compute and memory characteristics: On K40, some layers show stall due to memory-bottleneck, but
this stall-reason is absent on GTX1080, which shows that GTX1080 has an efficient data-path for enabling
data-movement between core and memory. On K40, LRN, pooling and softmax layers are both compute
and memory bound, but on GTX1080, they are memory-bound since GTX1080 has achieved higher
improvement in compute performance than memory performance. For the same layer, ALU utilization
efficiency is higher on GTX1080 than on K40.

Locality characteristics: They further use a batch size of 128 and find that both CONV and FC layers
show spatial locality and hence, show a high hit rate of texture cache. By comparison, L1 cache cannot
hold the working set due to its small size. Further, due to the higher clock frequency of GTX1080, ShM
and L2 cache provide higher throughput and can handle a larger number of memory transactions. This
also reduces the number of accesses to DRAM.

Since CONV and FC layers show high locality, they benefit significantly from texture cache and ShM.
By comparison, other layers have low data reuse, and hence, they do not fully utilize the on-chip memories.
The BW of ShM is nearly four times higher than that of texture cache since their access latencies are 38
cycles and ∼440 cycles, respectively. Hence, texture cache BW becomes a bottleneck in CONV layers. Since
the regular access pattern of activation layers allows memory-coalescing, the GlM throughput is higher
for activation layers than that of remaining layers.

Optimization opportunities: They suggest that instead of increasing DRAM bandwidth, increasing the
bandwidth of texture cache can provide larger improvement in performance. Further, since many layers do
not use the L1 cache, selectively applying L1 cache bypassing for those layers can improve performance.
Also, by fusing non-activation layers with CONV layers, the number of memory transactions can be
reduced with only a small increase in the number of computations in CONV layers.

Lym et al. [31] propose an analytical model of performance and memory traffic of GPU while it
runs CNNs. Their model handles im2col (image-to-column), which is most-widely used algorithm for
CONV layers on GPUs. im2col performs replication and reordering of input matrices for exposing the
parallelism. For a given CONV layer, im2col creates specific memory access and locality patterns and
these are accounted in their model.

Their model separately estimates traffic in L1/L2 cache, ShM and GlM (DRAM) according to the data
reuse granularity based on the GEMM kernel tiling factors. Then, based on memory traffic, memory-
bandwidths and computation-throughput, overall performance is estimated. Evaluation of their model for
AlexNet, ResNet, GoogleNet and VGG on three GPUs (V100, P100 and Titan XP) confirms its accuracy for
different layers. Their model is useful for identifying the resource that bottlenecks the performance. For
example, for most layers, throughput is the bottleneck since im2col GEMM already has high data reuse.
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The layers which do not have a sufficient number of CTAs for hiding the load latency are constrained
by DRAM latency and those having many CTAs for interleaving are constrained by DRAM bandwidth.
Based on the bottleneck analysis, they also propose architectural changes to improve CNN performance.

3.2 Impact of convolution strategy

There are four strategies for performing CONV:
1) Direct CONV: This approach works by sliding the filter over the input feature and computing sum of

dot-product between their elements.
2) GEMM-based: This approach transforms a 2D CONV into a GEMM operation. It flattens the 2D filter

into a 1D array and fills the input features in a matrix in a manner that one output feature is generated
on performing dot-product of the 1D array with every column of the matrix. This strategy is also
termed as “lowering” and is shown in Figure 2. Lowering allows performing CONV using GEMM
libraries which have been heavily optimized. The limitation of lowering is that it wastes memory BW
and increases memory requirement due to duplication of input features. This overhead is negligible for
dense MM but is unacceptable for sparse CONV due to its poor arithmetic intensity [14].

6 3

2 4

6 3 2 4
1 2 3

4 5 6

7 8 9

1 2 4 5

2 3 5 6

4 5 7 8

5 6 8 9

*
×

(a) Convolution (b) Matrix Multiplication

Filter
Input

Features

=
=40 55

85 100

40 55 85 100

Output 

Features
Filter

Input

Features

Output 

Features

Lowering

Fig. 2. Using lowering approach to convert (a) Conventional CONV using sliding window approach (b) GEMM-based CONV

3) FFT-based: CONV in time-domain is equivalent to multiplication in the frequency-domain, and this is
the key idea behind FFT-based CONV. Here, we multiply FFT of input feature with FFT of the filter
and then transform the result into time-domain using inverse FFT. 2D CONV is computed using 2D
FFT, which itself is computed as 1D FFT of every row followed by 1D FFT of every column.

4) Winograd: 1D CONV with m outputs and r-tap filter is shown as F (m, r). Input dimension is m+r−1.
Let the filter and input be shown as gi and di, respectively. Then, the Winograd CONV output is
computed as follows: Y = AT [U

⊙
V ] = AT [(Gg)

⊙
(BTd)]

Here, the matrices A, B and G are constant for a given value of m and r. Winograd CONV is performed
in four phases:
• Phase 0 (offline): Filter weights are transformed (U = Gg).
• Phase 1: Input data is transformed (V = BTd).
• Phase 2: “Element-wise multiplication” is performed (M = U

⊙
V ).

• Phase 3: “Inverse transformation” is performed (Y = ATM ).
2D CONV F (m × n, r × s) is performed by nesting the 1D CONVs F (m, r) and F (n, s) along each
dimension [10, 68]. Compared to direct CONV, Winograd CONV reduces the number of multiplications
at the cost of extra addition operations.

Table 5 highlights the CONV strategy used by different works. Some works dynamically change the CONV
strategy to exercise a tradeoff between performance and memory consumption, and these works are also
shown in Table 5.

Chetlur et al. [9] discuss the implicit-GEMM based implementation of CONV in cuDNN. In their
approach, fixed-size tiles of input matrices are loaded into on-chip memory and are utilized for computing
a tile of the output matrix. Operation on one set of input tiles is overlapped with the transfer of the next
set of tiles to hide the data-transfer latency. In GEMM-based approach, generating the lowered matrix
in off-chip incurs large overhead. To avoid this overhead, their technique lazily generates the lowered
matrix in on-chip memory. Compared to GEMM-based approach, their implementation additionally
requires performing indexing for loading appropriate tiles of input matrix in on-chip memory. Indexing
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TABLE 5
Strategies used for performing CONV

Category References
Direct [11, 12, 14, 16, 17]
Unrolling/matrix-multiplication [5, 11, 61, 69]
FFT [11, 16, 17, 36, 61]
Winograd [10, 61]
Dynamically choosing optimal CONV strategy [11, 24, 26, 28, 41]

computations require integer divide/modulo operations by “launch-time constant” values. To reduce their
overhead, they implement these computations using integer multiply and shift-operations.

Li et al. [23] compare performance and optimization opportunities of various libraries/frameworks for
optimizing CNNs on GPUs. They evaluate seven frameworks: Caffe, cuda-convnet2, cuDNN, fbfft [36],
Theano-CorrMM, Theano-fft and Torch-cunn on four CNNs: AlexNet, GoogleNet, VGG, and Overfeat.
They profile the performance of CONV layers since they take the largest fraction of execution time. They
analyze a single CONV layer with seven frameworks for five different parameters, namely kernel size,
stride, image dimension, mini-batch size and filter number. Their observations are as follows:

Functionality: cuda-convnet2 works well only when the mini-batch size is a multiple of 128. It also
requires kernels and input images to be square. GEMM-based CONV works with all the tested parameters.
FFT-based CONV (fbfft and Theano-fft) works with all the tested parameters except that stride size above
1 is not supported.

Performance: On the performance metric, fbfft is the best whereas cuDNN is placed second. Reason
for the high performance of fbfft is that FFT-based CONV is more efficient than direct and GEMM-based
CONV. In FFT-based CONV, the kernel must be padded to be of the same size as the inputs, which is costly
for small kernel size. Hence, for small kernel size (e.g., less than 7), cuDNN is faster than fbfft. Theano-
fft provides the least performance. Among the frameworks that perform GEMM-based CONV, cuDNN
provides the highest performance, except that for filter-number above 160, Theano-CorrMM provides
slightly better performance than cuDNN.

Functions taking the largest amount of time: Out of the frameworks that perform FFT-based CONV,
in Theano-fft, majority of the time is spent in preparing and transferring data between CPU and GPU,
whereas in fbfft, majority of time is spent in GEMM, FFT, inverse-FFT and data-transpose operations. In
GEMM-based CONV, GEMM operation and unrolling take the largest and second largest amount of time,
respectively.

Memory consumption: In terms of increasing memory consumption, CONV approaches are: direct,
GEMM-based and FFT-based. Among GEMM-based frameworks, Torch-cunn takes the least memory,
whereas for large kernels, cuDNN takes the least amount of memory. Among FFT-based frameworks,
Theano-fft takes less memory than fbfft, but both of them take an unusually high amount of memory for
certain configurations. Thus, cuda-convnet2 is best for platforms with small memory, whereas cuDNN
balances multiple factors such as performance, memory consumption, and versatility.

GPU resource utilization: cuda-convnet2 has low occupancy on GPU, since each thread in cuda-
convnet2 uses a high number of registers and hence, due to register-usage limit, only few threads can run
at a time. Due to this, memory latency cannot be effectively hidden. By contrast, the poor performance
of Theano-fft comes from issuing many accesses to GlM since it does not fully utilize ShM and registers.
Theano-fft also has poor warp-execution efficiency due to thread-divergence arising from control-flow
instructions.

Theano-fft, Theano-CorrMM, Torch-cunn, and Caffe show poor GlM load efficiency due to lack of
memory-access coalescing. The ShM efficiency is lowest for Theano-fft due to the large number of bank-
conflicts. Among GEMM-implementations, cuDNN provides highest ShM efficiency. Since the GEMM
operations in Theano-CorrMM, Torch-cunn, and Caffe are performed by cuBLAS, which is optimized for
ShM, these frameworks also show high ShM efficiency. Finally, the overhead of data-transfer between CPU
and GPU is nearly-zero in fbfft, Caffe and cuDNN, but is slightly higher in other frameworks.
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3.3 Optimizing Winograd CONV

Park et al. [10] present two techniques for improving the performance of Winograd CONV on GPU. They
note that a large fraction of weights in a CNN are zero, especially after applying pruning technique. If
any element of U is zero, their first technique avoids loading it and also skips the multiplication between
elements of U and V . The corresponding code is shown in Figure 3(a). Due to the lockstep execution of
threads in a warp, the above approach reduces latency only if all the threads of a warp operate on zero U
values. Their technique groups threads performing multiplication on the same input fmap into the same
warp, since their U [i] value is same and hence, zero-result multiplication can be skipped in all the threads
of a warp.

load u0, U[0]

load v0,V[0]

mul m0, u0, v0

store M[0], m0

load u1, U[1]

load v1, V[1]

mul m1, u1, v1

store M[1], m1

load u2, U[2]

load v2, V[2]

mul m2, u2, v2

store M[2], m2

load u3, U[3]

load v3, V[3]

mul m3, u3, v3

store M[3], m3

1 0 1 0

Non-zero U[i] values

SkipCount

PCcurr

Pcnext=Pccurr+1

PCcurr

Pcnext=

Pccurr+(SkipCount-1) ×

IterationLength+1

IterationLength = 4

(b)

if U[i] == 0

continue

(a)

Baseline
execution

Execution in 
technique of 
Park et al.

Fig. 3. (a) Code of Phase 2 of “Winograd CONV” after skipping multiplication with zero (N= number of elements in matrix M) (b)
Incrementing PC based on SkipCount and IterationLength to avoid the need of checking conditions

They further note that since each iteration has only a few instructions, the relative overhead of
condition-checking instructions becomes large. Hence, despite avoiding multiplications, above technique
degrades performance, due to the overhead of instructions added for performing condition check. For
mitigating this overhead, they add a bit-vector in every GPU core, such that ith-bit of the vector is 0 if U[i]
is 0, and vice versa. In normal case, in each cycle, PC (program-counter) is incremented by one, as shown
in the left side of Figure 3(b). In their technique, after every iteration, the bit-vector is scanned to find the
next non-zero bit. Then, the PC is incremented in a way that it directly jumps to read the instruction of
the corresponding iteration. This is shown in the right side of Figure 3(b). Here, SkipCount is obtained
by subtracting the present index from the next non-zero index and IterationLength shows the number
of instructions in an iteration. Thus, without using condition-check instructions, their technique executes
only those iterations whose U [i] is non-zero.

The above technique is effective for small tile size such as 2x2 since in this case, phase 2 contributes to
the largest portion of execution time. However, for large tiles such as 6x6, phases 1 and 3 are the largest
contributor to execution time. Thus, for large tiles, the overhead of addition operations becomes large. For
such case, they propose a second technique which increases the reuse of operands of add operation during
their residency in RF. This reduces accesses to the on-chip cache. Since GPU has a huge number of threads,
the per-thread RF capacity is small. Hence, maximally reusing the operands present in RF is important.

They propose the following optimization for phase 1, and the optimization proposed for phase 3 is
similar to it. The input access pattern in computation of matrix V is shown in Figure 4. When F (4x4, 3x3)
operates on a 6x6 input tile (i.e., calculating 4x4 outputs with a 3x3 kernel), there are nine distinct access
patterns in the computation of V[0] to V[35]. As an example, computing V[11] requires accessing 12
elements shown with the shaded square in Figure 4 and marked as Pattern6. They make two observations
and propose corresponding optimizations based on them, which are shown in Table 6.
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𝑉 7 ‐ 𝑉 10 , 𝑉 13 ‐ 𝑉 16 ,
𝑉 19 ‐ 𝑉 22 , 𝑉 25 ‐ 𝑉[30]

𝑉 31 , 𝑉 32 , 𝑉 33 , 𝑉[34]

𝑉[0] 𝑉 1 , 𝑉 2 ,
𝑉 3 , 𝑉[4]

𝑉[5] 𝑉 6 , 𝑉 12 ,
𝑉 18 , 𝑉[24]

𝑉 11 , 𝑉 17 , 𝑉 23 , 𝑉[29] 𝑉[30] 𝑉[35]

Pattern1 Pattern2 Pattern3

Pattern8 Pattern9

Pattern4 Pattern5

Pattern6 Pattern7

Fig. 4. Data access scheme in phase 1 of Winograd CONV [10]

TABLE 6
Optimization opportunities exploited by Park et al. [10]

Observations Corresponding optimizations
1. Input data elements required for computing
some elements of V are same. For example, V[7]-
V[10], V[13]-V[16], V[19]-V[22] and V[25]-V[30]
are computed from the same parts of input data
(Pattern5).

Additions are reordered such that elements of V requiring same inputs
are calculated in close proximity of time. For example, after computing
V [11], V [17] is computed instead of V [12], since both V [11] and V [17]
require same inputs (Pattern6).

2. Many patterns need common portions of input
data and the amount of overlap is different in var-
ious pairs. As an example, Pattern4 and Pattern6
have no overlap whereas there are 8 common
elements between Pattern4 and Pattern5.

They place those code sections at contiguous locations which have
many input portions in common. Also, if the total inputs required for
different access patterns is less than the number of registers per thread,
all inputs required for those patterns are loaded together. For instance,
18 distinct input elements are required for Pattern7 to Pattern9, which
is less than 32 register-per-thread limit, even on allocating 6 registers to
V[30] to V[35]. Hence, these 18 elements are loaded together.

After applying these optimizations, the final order of computation is (Pattern1 and Pattern2 and
Pattern3) → Pattern6 → Pattern5 → Pattern4 → (Pattern7 and Pattern8 and Pattern9). Overall, their
techniques improve CONV performance significantly and the two techniques provide improvement for
different tile sizes.

3.4 Optimizing data-layouts
Let Fh and Fw show the dimensions of CONV filter, Co shows number of filters or output fmaps, Ci shows
number of input fmaps, Hi and Wi show the height and width of a fmap and Ni shows the batch size.
Then, Equation 1 shows the computation performed in CONV.

Outco[Ni][Co][Hi][Wi] =
C∑

Ci=0

FH∑
fh=0

FW∑
fw=0

Inco[Ni][Ci][Hi+ fh][Wi+ fw] ∗ filter[Co][Ci][fh][fw] (1)

The 4D array shown in Equation 1 can be stored in different layouts. Assume that the following symbols
are used: image height/width (H/W ), number of images (N ) and feature maps (C). Evidently, Equation
1 assumes NCHW layout, where the items along the lowest dimension W are stored contiguously in
memory. Successive elements in H dimension are stored at a distance of W , and those in C dimension
have a distance of H ∗W . Placement of data into different dimensions leads to multiple ways of storing
the data in the memory. For example, with four dimensional data, there are 24 ways of storing the data
in the memory. Li et al. [11] study the performance impact of data-layout on different CNN layers, since
data-layout decides the grid and block dimensions in the GPU. The layouts used in various frameworks
are shown in Table 7(a).

Optimizations to CONV layer: Li et al. [11] show that NCHW and CHWN layouts lead to large
performance difference for both CONV and FC layers. Moreover, no layout provides higher performance
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across all the layers. To find the optimal layout, they study CONV layers from multiple CNNs, such as
AlexNet, LeNet, etc. These layers use only a few distinct values of N (batch size), which are all multiple
of 16. Hence, using N as the lowest dimension is reasonable since it facilitates memory coalescing due to
corresponding thread-organization. Further, generally, the images are square, that is, the values of H and
W are equal. However, the values of H and W vary across the CONV layers between 12 to 224. Also, the
depth of input fmaps (Ci) is one for gray-scale images and three for RGB images in the first CONV layer
and is a multiple of 16 in the remaining CONV layers. Due to this, memory accesses issued by a warp of
32 GPU threads becomes regular.

Based on these factors, the W and H dimensions can be combined, and N can be kept as the lowest
dimension. This leads to two layout candidates: CHWN or HWCN. They note that the performance of
HWCN is same as that of CHWN since it does not affect the coalescing characteristics of N dimension and
data reuse behavior of remaining dimensions. They further note that since the 2D CONVs are performed
on the H and W dimensions, the 4D matrix is generally mapped into a 2D array, and the CONV is
performed as MM using NCHW layout. This layout is used in cuDNN and Caffe. Hence, they compare
NCHW and CHWN layouts.

They vary the value of N or C, keeping the other values constant and compare the performance
of NCHW and CHWN layouts. Since MM has only two dimensions, 2D MM requires matrix unrolling
(along H and W) for expanding the input matrix and merging multiple dimensions into two dimensions.
This overhead is higher for small-size matrices. Hence, when C is below a threshold, CHWN performs
better as it does not require matrix expansion. When C is larger than this threshold, NCHW is better since
matrix expansion improves data reuse and parallelism due to the merger of dimensions. From this, they
derive a heuristic which is shown in Table 7(b)

TABLE 7
Summary of findings of and heuristics proposed by Li et al. [11]

(a) Layouts used in different frameworks
Layout is used in frameworks
CHWN cuda-convnet
NCHW Caffe, cuDNN

(b) Heuristic for deciding optimal layout
Layout should be used when

CHWN C is below a threshold Tc (since NCHW incurs high overhead of memory transformation) or
N exceeds a threshold Tn (since large N leads to better data reuse and memory coalescing)

NCHW otherwise
(c) Synergy between data-layout and CONV strategy

Layout should be used with
CHWN Direct-CONV
NCHW FFT-based CONV or GEMM-based CONV

Changing the layout: They further discuss a technique for changing the layout from CHWN to NCHW.
This requires transposing a 4D array, which can be done using a 4D thread-hierarchy. However, this
approach is not bandwidth-efficient due to poor coalescing. They propose three strategies for optimizing
it. (1) Since the relative positions of C, H and W are the same in both the layouts; they combine them
in a single dimension CHW. This allows lowering the 4D transformation into a 2D transformation from
[CHW][N] to [N][CHW]. For this, the matrix is flattened, and a 2D thread-hierarchy is used. Then, ShM
based tiling is used for achieving memory coalescing. (2) In Kepler architecture, ShM allows both 4B and
8B accesses. For enjoying the bandwidth efficiency of 8B accesses, they group two successive floats into
a single float2 variable of vector type. (3) At the time of write-back, a tile is scattered into multiple
successive rows depending on the tile shape, and every vector variable writes in a coalesced fashion. This
boosts BW usage by doubling the number of GlM access transactions. This vectorization approach is used
when N equals or exceeds 64.

Synergistic use of layout and CONV strategy: They further compare FFT-based CONV with GEMM-
based CONV and note that FFT-based CONV gives superior performance when the batch size or filter
kernel is large, or the number of channels is high. Otherwise, FFT-based CONV performs poorly since the
overhead of kernel-padding, multiple kernel launches, and memory-streaming nullify its benefits. While
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selecting a data layout, their technique also selects the best implementation of CONV, since different
implementations of CONV work best with different layouts. The combinations providing best results are
shown in Table 7(c).

Optimizations to pooling layer: They further find that pooling layers achieve much lower bandwidth
in both cuDNN and Caffe than what they achieve in cuda-convnet. The reason behind poor access
efficiency is the use of “NCHW layout” in pooling layers which causes strided memory accesses. Further,
in all three libraries, many GlM accesses are redundant. For example, on doing pooling operation on 12
elements with a stride of 2 and window size of 4, 20 accesses to GlM are required for producing five
output elements. However, as shown in Figure 5, most of these accesses are redundant. The fraction of
redundant accesses is even higher for 2D images than with 1D images. To improve GlM access efficiency,
they propose using CHWN layout. Also, the number of output elements of pooling layer, which are to be
computed by each thread, is increased by a factor. The input elements of each thread are cached in RF,
and hence, they are fetched from GlM only once. The expansion factor is selected using the hill-climbing
strategy with a view to striking a balance between data reuse and register usage.

…

…

Data accessed 

redundantly

Global 

memory
Load operation

Fig. 5. Illustration of redundant GlM accesses in pooling operation [11]

Optimizations to softmax layer: The bandwidth attained by softmax layers is also much lower than
the peak bandwidth. This is because, for meeting the inter-layer dependency constraints, Caffe and cuda-
convnet use a different kernel for every step. Interim outputs of successive kernels are sent to and fetched
from GlM which is inefficient. Further, the code has two nested loops: the outer loop over the batch of
images and the inner loop over categories. The inner loop is not parallelized due to data dependency.
The outer loop is parallelized using threads, but this is not sufficient for hiding GPU instruction latency
since the batch size is usually small (e.g., 128). To address these challenges, they fuse the kernels, so that
the data-transfer happens through ShM or register and not GlM. Also, to improve parallelism, they use
threads for parallelizing the inner loop and use ShM for performing reduction operation. Overall, their
techniques improve the performance of both individual layers and the overall network.

3.5 Optimizing data reuse

Chen et al. [14] note that lowering CONV into GEMM leads to wastage of memory bandwidth due to
duplication of input features and limits possibility of data-reuse. Also, pruned CONV is not efficient on
GPU due to irregular computations and memory accesses. They propose performing direct CONV which
does not suffer from the above limitations. They further discuss several optimizations to direct CONV. To
avoid the overhead of constructing the lowered matrix in memory, cuDNN [9] lazily loads the input matrix
into cache at runtime, instead of creating it in the off-chip memory. They use a similar approach adapted
for direct sparse CONV. Input fmaps are stored in a 1D array, and the element at a suitable index of the
input array is loaded into on-chip memory at runtime. After completion of the computation, the output is
stored at a suitable index position. This approach incurs overhead due to computing index values for both
input and output arrays dynamically. Still, it is advantageous since it enhances the arithmetic intensity of
sparse computation, which is memory-bound. Before performing CONV, the weight matrix is stretched,
so it matches the input array dimension.

To reduce memory divergence, they use a dataflow which avoids irregular computations by computing
the multiplications separately. The key idea is shown in Figure 6. CONV of a 3x3 filter (with only two
non-zero entries) with a 6x6 input feature is divided into the summation of products of non-zero weights
with 4x4 sub-matrices.

As for data-to-thread mapping, they note that if array elements with consecutive row/column indices
are stored contiguously, then, the accesses to the input array are coalesced. In their technique, one
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Fig. 6. Dividing a sparse CONV into summation of products of non-zero weights [14]

thread computes one element of output matrix. Since successive threads compute successive outputs,
write-accesses to output array are contiguous. Thus, most accesses to GPU memory are coalesced which
improves efficiency.

Their technique tries to exploit reuse of all data structures: inputs, weights, and partial sums. A thread-
block handles computation of one output channel. The weights are stored in the cache, and input fmaps
are streamed into the SM. To benefit from the overlap of input features across various sliding windows,
input fmaps are also saved in cache for reuse. Figure 7 illustrates an example of exploiting “data reuse”
during sparse CONV.
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Fig. 7. Illustration of data reuse in sparse CONV [14]. Colored boxes show the data that are accessed repeatedly.

As for storage of different structures, (1) weights are loaded to ShM by threads in a block which leads
to coalesced accesses to GlM. (2) Since the input data is not changed, it is stored in read-only cache to reuse
it across thread-blocks on the same SM. (3) Partial sums are stored in RF to achieve efficient accumulation.
Finally, they propose specific optimizations for specific values of parameters, such as stride, batch-size,
filter size, etc. There technique provides higher performance than both cuBLAS and cuSPARSE libraries.

Mitigating bank-conflicts problem in ShM: Let the width of ShM be WShM . WShM equals 8 for Kepler GPU
and 4 for older GPUs. Let the width of datatype be WC , for example, WC equals 4 for integer datatype.
Let Q =WShM/WC . If Q = 1, there are no bank-conflicts in ShM. However, if Q > 1, then multiple threads
access the same bank, which leads to conflicts. Figure 8(a) shows this situation for Q = 2. In such cases, WC

can be increased by Q times, such that every thread retrieves Q elements in each access, which improves
ShM BW. This case is shown in Figure 8(b). As an example, MAGMA is more efficient than cuBLAS on
Fermi (WShM = 4) but is less efficient on Kepler (WShM = 8) due to the bank-conflicts. However, matching
WC with WShM improves MAGMA performance significantly. Such optimizations are especially important
for workloads that show sensitivity to ShM BW.

Chen et al. [12] note that in CONV, input pixels are reused in both horizontal and vertical directions.
For example, in Figure 9(a), pixels b, c, f, g, j, and k are reused in the horizontal direction and e, f, g, i, j and
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Fig. 8. (a) When WShM = 2WC (Q = 2), eight threads access four banks of ShM, which leads to bank-conflicts (b) On increasing
WC by Q times [12], each thread retrieves Q elements in each access. A bank is accessed by a single-thread, which avoids
bank-conflicts.

k are reused in the vertical direction. Assuming F filters, each of size K×K, an input pixel may be reused
up to F × K × K times. Chen et al. present a technique for exploiting data reuse for optimizing direct
CONV on GPUs. They discuss their technique for two cases: (1) when there is only one input channel (e.g.,
grayscale images) and (2) general case of multiple input channels.

Case 1: single input channel: Here, every thread stores K × K pixels of the input in the register. The
challenge in achieving reuse is that when a thread performs the next-horizontal CONV, some pixels
required for next-vertical CONV are lost. They divide the input image into tiles of size U×V which allows
data-sharing across vertical dimension, as each row of the input can be used in CONV of K rows. A block
of V threads operates on each image tile, and thus, different tiles are processed concurrently by different
thread-blocks. The V threads operate in parallel on one row at a time, until they reach the last row. This is
illustrated in Figure 9(b).
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Fig. 9. (a) Data reuse in CONV. (b)-(c) CONV approach of Chen et al. [12] for case 1 (K = 3). (b) When WShM = WC (c) When
WShM = 2WC (i.e., Q = 2). Here, each thread performs Q CONVs to obtain Q contiguous output pixels of a row.

In case of the single input channel, filters are generally small, and hence, they are stored in constant
memory. All threads of a warp perform CONV using the same filter concurrently, so they access the same
address. This improves the efficiency of constant memory.

The input is stored in GlM. For performing CONV, data sharing in the horizontal dimension is achieved
using ShM and data reuse in the vertical dimension is achieved using registers. Thus, each input pixel is
read only once from GlM, which improves GlM access efficiency. When Q = 2, which is the case for Kepler,
each thread-block has V/Q threads. Every thread accesses and computes Q contiguous output pixels in
every row and Q× U output pixels in the tile. When Q = 2, built-in datatype float2 is used. Figure 9(c)
shows their CONV approach for Kepler GPU (Q = 2). Their approach increases register-requirement of
each thread slightly. Since successive threads access contiguous addresses, accesses to both ShM and GlM
are optimized. For case 1, they find the optimal values as U = 8 and V = 256.

Case 2: multiple input channels: In this case, the pixels of single CONV cannot fit in the registers. Due to
this, one CONV operation needs to be split into multiple parts, and the interim results are aggregated in
the registers. Further, with an increase in the number of channels, the filter size also increases and hence,
they need to be stored in GlM instead of constant memory.

Similar to case 1, the input image is divided into tiles of size U × V . A 2D thread-block layout of size
BX × BY is used. In Y-direction, a thread-block handles C tiles at the same position of all C channels. In



14

X-direction, a thread-block handles FB successive filters, where BX = dF/FBe, and F is the number of
filters. Threads in a block are organized in the 2D layout of size TX × TY . Every thread handles VT output
pixels and FT filters, where TY = V ×U/VT and TX = FB/FT . Every thread uses FT ×VT registers to store
the interim CONV results for FT filters and VT pixels.

CShM channels of image tiles and filters are stored in ShM. When loading filters from GlM to ShM,
padding is required to avoid bank-conflicts since transpose operation is performed. By comparison, for
loading image tiles, padding is not required. A single thread operates on VT contiguous output pixels,
which reduces accesses to ShM compared to the case when different threads operate on these pixels. At
a time, only one row of input pixels is stored in the register of every thread and accumulation of CONV
results happens in multiple iterations.

Every thread reads Q contiguous filter values at a time from ShM along the horizontal dimension,
which avoids bank conflicts. Reading of image tiles from ShM is also conflict-free since TX contiguous
threads in X direction read the same address which allows the use of the broadcast scheme of ShM. The
limitation of their approach is that storing the output to GlM does not lead to coalesced accesses since
nearby threads in X-dimension process distinct output fmaps. However, this has a negligible impact on
performance since writing-back the output takes a small amount of time. Table 8 shows the optimal values
of different quantities at various filter sizes for case 2. On Kepler GPU, their technique achieves higher
performance than the cuDNN library for both the cases. The performance improvement is much higher
when there is only one input channel.

TABLE 8
Optimal values of different quantities for various filter sizes for case 2 [12]

Filter size 3x3 5x5 7x7
U 4 8 4
V 32 32 64
FB 64 32 32
VT 16 8 8
FT 4 8 8

CShM 2 1 1

The limitation of the technique of Chen et al. [12] is that since it assigns a fixed amount of data to every
SM, it does not work well when the fmap size is less than 32. In state-of-the-art CNNs, most CONV layers
operate on images of less than 32 size and hence, their technique is not effective for recent CNNs.

3.6 Optimizing tiling and batching schemes
Li et al. [5] note that tiling and batching are correlated. Data reuse can be increased by increasing the
tile size, but this reduces TLP and thus, reduces the optimization space for the batching technique, and
vice versa. Further, although cuBLAS provides a batched GEMM function (cublasSgemmBatched), it
can batch the GEMMs with the same size only. However, in real-world DNNs, the dimensions of GEMMs
being batched vary greatly [5]. They present a synergistic technique for tiling and batching for improving
performance of GEMMs on GPUs. Their technique first performs tiling of GEMMs and then, performs
batching, i.e., assigns the tiles to thread-blocks. Figure 10 presents the overview of their technique. Let
C=A*B, where the dimension of A and B are MxK, and KxN, respectively. They note that the value of M*N
affects TLP since when M and N are large, the number of tiles and the tile size is high. Similarly, the value
of K decides the workload of each tile and thus, affects ILP.

They note that the tile size that is optimal for a single GEMM is not optimal on using batching since
each GEMM in the batch may prefer different tile-size and the optimal tile size also depends on the
number of GEMMs that are batched together. On using the same tile size for all GEMMs, some threads in
a thread-block may remain idle.

A tiling scheme is characterized by the tile size (BY x BX x BK) and the total threads that execute the
tile. Each thread executes one sub-tile of the tile and their size is shown in Table 9. The number of threads
required by a tile is obtained by dividing (BY x BX) by the size of the sub-tile. Table 9, heading “Single
GEMM”, summarizes the 6 tiling schemes of previous works. For example, the number of threads required
by the ‘huge’ scheme is (128*128)/(8*8) = 256.



15

GEMM1 = 

128×128×96

Tile1 = 

32×32×16

A

B

C

GEMM2 = 

64×64×64

Tile2 = 

16×16×16

A

B

C

GEMM3 = 

64×96×64

Tile3 = 

16×16×16

A

B

C

Block(0,M)

Block(0,0)

Block(N,M)

Block(N,0)
…

…

Block(0,M)

Block(0,0)

Block(N,M)

Block(N,0)
…

…

Tiling

Tile 

(32×32)

Tile 

(16×16)

Tile 

(16×16)

Batching
Block(0,M)

Block(0,0)

Block(N,M)

Block(N,0)
…

…

Fig. 10. Coordinated tiling and batching approach of Li et al. [5]

TABLE 9
Tiling schemes for single and batched GEMM [5]

Tiling scheme BY BX BK
Single GEMM Batched GEMM [5]

Sub-Tile Size Threads Sub-Tile (128-Threads) Sub-Tile (256-Threads)
small 16 16 8 4×2 32 2×1 1×1

medium 32 32 8 4×4 64 4×2 2×2
large 64 64 8 8×8 64 8×4 4×4
tall 128 64 8 8×8 128 8×8 8×4

wide 64 128 8 8×8 128 8×8 8×4
huge 128 128 8 8×8 256 16×8 8×8

They propose a tiling scheme for batched GEMM, where sub-tile size is chosen such that the number
of threads of a tile is the same (either T=128 or T=256). These tiling schemes are shown under the heading
“batched GEMM” in Table 9. Use of same thread-block size avoids the thread-idling issue. With increasing
T, there are more threads for exploiting TLP, whereas on decreasing T, the sub-tile size, and hence, the
work to be performed by each thread increases. Hence, they provide two choices (T=128 or T=256), and
of these, their technique selects one version for a certain GEMM. They keep BK as constant (8) and only
change BX and BY.

For deciding the tiling scheme, they propose an algorithm which prioritizes TLP and then tries
improving ILP. For all the GEMMs, their algorithm first tries to use sub-tile size corresponding to 256-
threads since it has higher TLP than their 128-thread counterpart. The algorithm works in three phases,
which are shown in Table 10.

TABLE 10
Algorithm for finding the tiling strategy [5]

Phase 1 For each GEMM, feasible tiling schemes, i.e., those with BY ≤M and BX ≤ N are selected and kept in a priority
queue such that smaller tiling scheme has higher priority. If the queues of all GEMMs have only one tiling scheme,
the algorithm switches to schemes with 128-threads and performs phase 2.

Phase 2 A tiling scheme for every GEMM is popped from its priority queue, and the overall TLP is estimated for all the
GEMMs.

Phase 3 If the TLP exceeds a threshold, a larger scheme is evaluated by repeating phase 2 for improving ILP at the
cost of TLP. Else, the existing scheme is chosen as the final solution. The threshold is chosen based on the GPU
architecture, e.g., the threshold is 65536 for V100 GPU.

After tiling, the batch of GEMMs is changed into the batch of tiles. Their technique assigns more than
one tile to a thread-block for exploiting ILP, especially for small values of K. For finding the assignment,
they design two heuristics: (1) threshold batching which prioritizes TLP but also ensures that the workload
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of a tile is more than a threshold (for example, 256 for V100 GPU) (2) binary batching which gives more
priority to ILP and batches at most two tiles at a time. From these two heuristics, one is selected using
“random forest” algorithm. They perform experiments using synthetic GEMM and GoogleNet and show
that their technique outperforms the MAGMA library.

Oyama et al. [41] note that cuDNN works by selecting the best CONV algorithm out of eight possible
CONV algorithms such that memory budget constraints are met. However, if the workspace required
by an efficient algorithm exceeds the budget, cuDNN uses a slower algorithm with a smaller memory
requirement. Due to this, fast algorithms such as FFT or Winograd may be used only if very large memory
space is available.

They present a wrapper, termed “micro-cuDNN” to cuDNN which splits the mini-batch into multiple
micro-batches and finds CONV algorithm to be used for each micro-batch. Then, it performs CONV on
each micro-batch serially. A reduction in effective mini-batch size reduces memory requirement and hence,
allows using a faster CONV algorithm. Figure 11 shows the comparison between the working of cuDNN
and “micro-cuDNN”. For utilizing the workspace, they present two schemes which are shown in Table 11.

CONV1

N = 256

ReLU1

N = 256

Pool1

N = 256

CONV2

N = 256

CONV1

N = 128

CONV1

N = 128

ReLU1

N = 256

pool1

N = 256

Using GEMM-based convolution

Using FFT-based convolution

(a) cuDNN

(b) micro-cuDNN

CONV2 (N=64)

Time

Fig. 11. Comparison between cuDNN and micro-cuDNN (N is the mini-batch size) [41]

TABLE 11
Schemes for utilizing the workspace in the technique of Oyama et al. [41]

Workspace reuse scheme Workspace division scheme
One workspace is allocated to each
layer, which is shared by different
micro-batches.

A single workspace is allocated to the entire network from which, different portions
are allocated to different layers. This allows small groups of CONV operations, such
as those used in Inception module, to execute together with bigger workspaces. In
this scheme, the workspace management is performed by their technique and not
the DL framework since those frameworks do not view the workspace needs of the
network as a whole.

The sizes of micro-batches are
found using dynamic program-
ming technique to minimize overall
execution time.

Finding the mini-batch size in this scheme is more challenging than that in
“workspace reuse” scheme because of the interdependency between the configu-
rations of different CONV kernels. 0-1 ILP is used for solving this problem under
memory constraint and with the goal of minimizing total execution time.

The optimal configurations and benchmarking results can be stored for later reuse by layers with
similar characteristics on the same or other GPUs. They integrate micro-cuDNN in Caffe and Tensor-
Flow. Their technique improves hardware usage efficiency without compromising on training accuracy.
However, their technique does not provide improvement when the workspace size is too small or too
large since in both cases, splitting into micro-batches provides no improvement over cuDNN. Further, the
reduction in mini-batch size reduces reuse opportunity of weights.

Holmes et al. [8] compare three RNN frameworks/libraries on GPU, viz., cuDNN, TensorFlow, and
TensorRT. For several model sizes, GPU implementation of TensorFlow is 90× slower than its CPU
implementation. The GPU implementation of TensorFlow packs eight independent MMs of LSTM (long
short term memory) into one MM for increasing the workload of each kernel for improving throughput.
Still, it is inefficient since at least one kernel is launched for every iteration, and the barrier between the
kernels leads to large overhead. Also, in every iteration, the whole weight matrix is loaded from GlM or
L2 cache. TensorRT also suffers from a similar issue. While cuDNN achieves lower latency than DeepCPU
[63] for a majority of configurations, it shows poor scalability to even small batch sizes (e.g., five) and
thus, fails to benefit from the parallelism of GPU. Also, the fraction of GPU’s peak performance achieved
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by cuDNN is lower than the fraction of CPU’s peak performance achieved by DeepCPU. They present a
GPU-library for enabling efficient implementation of RNN on GPU.

Since the weight matrix of typical RNN cannot fit in a single SM, it needs to be partitioned across SMs.
There are two strategies for doing this: input-based tiling (shown in Figure 12(a)) and output-based tiling
(shown in Figure 12(b)). For performing two independent MMs on a GPU with four SMs, input-based tiling
runs every MM on two SMs. Each SM stores half of the weight matrix which mitigates RF capacity issue,
but requires one “global synchronization” (GS) after MM and another GS after element-wise operators.
Thus, if there are 8 MMs (e.g., in LSTM), then, 8 GSes are required after MM.
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Their technique uses output-based tiling where every SM is responsible for computing one output tile,
as shown in Figure 12(c). It co-locates those weights from different weight matrices on the same SM that
are needed for producing the given output tile. In output-tiling, only one GS is required since element-
wise operations happen inside a single SM only. Performing only one GS in every time step is efficient,
which is the minimal number of GS required to make progress to the subsequent time-step. Since GRU
has dependent MMs, a different strategy is used for this.

After this, the weights of every tile are loaded to RF which persist over different steps of the RNN
calculations. After this, at each time step, the global hidden state H is replicated in the ShM of every SM
and threads are mapped to the weight matrix. Then, optimized computations are performed to generate
an updated local version of H . At last, all SMs are synchronized, and local versions of H are merged into
the global copy. If the model cannot fit in the RF, their technique defaults to fusing different MMs since
high data parallelism itself enables leveraging GPU resources.

As for the strategy to map work to threads, every warp computes a different output tile. Thus, every
warp performs a partial MM, which requires loading state vector in RF and computing the partial sum.
By performing the reduction on partial sums, the final output is produced. For optimizing the above
steps, they propose three schemes (1) using an entire warp to sequentially generate the output elements
(2) assigning NumThreads/NumOutputElements to every output element (3) using adaptive-size work
units, each of which generates selected output elements in a sequence. Of these, they use scheme (3) due
to its flexibility.

Different choices of mapping operators to SMs and threads to compute-elements leads to huge config-
uration space. Their technique uses a lightweight performance model to select the best M configurations.
Then, M kernels, each corresponding to one configuration, are compiled and based on a profiling phase,
the most performant kernel is finally selected. The performance model combines an analytical model with
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a low-overhead measurement approach and is very accurate. Overall, their technique outperforms the best
CPU and GPU implementations and also improves resource utilization.

Note that of the works discussed in this section, Li et al. [5] perform tiling and batching in coordinated
manner, whereas Oyama et al. [41] perform only batching and Holmes et al. [8] perform only tiling.

3.7 Optimizing pruning schemes
Yu et al. [4] evaluate “deep compression” technique using five CNNs on three processors: a processor
with low-parallelism (microcontroller), modest-parallelism (CPU) and high-parallelism (GPU). They use
a batch size of 1 on microcontroller and CPU, and 50 on GPU. They find that in spite of removing 80%
of the weights, pruning harms the performance of eight configurations. On the rest of the configurations,
performance improvement is much lower than the decrease in MAC operations. This happens because
unlike dense matrices, sparse matrices are not regular. This is evident from Figures 13(a)-(b). Also, as
shown in Figure 13(c), sparse matrices require additional memory and computations for storing and
decoding the sparse format.
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When the unpruned network runs on the microcontroller, the memory latency cannot be hidden due
to the simple design of microcontroller. Hence, a decrease in model size due to pruning compensates the
inefficiencies of sparse MM. Hence, pruning improves performance on the microcontroller. On the GPU,
pruning reduces the performance of all the networks, since sparse MM forgoes optimizations such as
memory-coalescing and matrix tiling. On CPUs, the impact of pruning depends on the relative fraction
of computations performed in FC and CONV layers. Pruning improves the performance of FC layers
since a decrease in memory accesses boosts the performance of matrix-vector multiplication operations.
However, since CONV layers perform MM, where the weights are reused several times, a decrease in
memory footprint brings marginal benefit. Hence, pruning hurts performance of CONV layers on CPU.

Yu et al. present a technique for customizing pruning to the processor architecture. Figure 14
summarizes the working of their technique. They classify the processors into three types according to their
parallelism. (1) Processors with low-parallelism have in-order cores with no cache and limited storage. For
example, “ARM Cortex-M4” features a 2-way SIMD design and a 3-stage “inorder pipeline”. (2) Processors
with modest parallelism utilize ILP and MLP in addition to SIMD units. They also have a deep cache
hierarchy and huge memory capacity. Examples of this are out-of-order CPUs. (3) Processors with high-
parallelism such as GPU utilize TLP for further improving performance. Their throughput is sensitive to
BW and not to the DNN model size.

On the low-parallelism processor, their technique performs “SIMD-aware weight pruning” of DNNs.
First, the weights are classified into aligned groups of size same as the SIMD width. For example, on a
2-way SIMD, the weights are divided into groups of two. Then, the groups, whose “root-mean-square”
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value of weights is below a threshold, are pruned. These steps are shown in Figures 13(d)-(e). Then, the
pruned matrix is retrained. Pruning and retraining are repeated until the accuracy of retrained DNN falls
just below that of the original network. Layers with low redundancy or those showing no performance
benefit from pruning are not pruned. Also, the dropout ratio is adjusted during training. The “sparse
weight matrix” is stored using a modified CSR format, shown in Figure 13(f), where column index of
only the first element in every group is stored. This reduces the model size. As the inputs are present in
contiguous locations, a single SIMD instruction is sufficient to load them, and this reduces the number of
instructions.

For the highly-parallel processor such as the GPU, their technique performs node pruning. In FC layers,
one neuron is taken as one node, and in CONV layers, one fmap is taken as a node. Node pruning uses
mask layers for selecting nodes which are not important so that their output can be blocked. After mask
layers are trained, the blocked nodes are eliminated, and after all redundant nodes are eliminated, mask
layers are also removed. Finally, retraining is performed for obtaining the pruned network. Node pruning
does not make the network sparse, and thus, the overheads of the sparse network are not incurred. Node
pruning reduces the layer-size but not as much as the weight pruning. Still, on GPUs, node pruning leads
to larger throughput than the weight pruning technique.

On moderately-parallel processors, they first apply node pruning to CONV layers and then, they apply
SIMD-aware weight pruning to FC layers. On different processor platforms, their pruning technique brings
larger improvement in performance than naive pruning, while reducing the model size and without losing
prediction accuracy.

Hill et al. [13] note that hardware-unaware pruning such as deep-compression technique harms
performance on GPU due to increasing branch divergence and uncoalesced memory accesses. Figures
15(a)-(b) compare the computations in the baseline and pruned DNN. Further, improving off-chip BW
provides only limited benefit in DNN execution on GPU. By comparison, many DNNs are bottlenecked
by on-chip memory (i.e., ShM) BW since on applying loop tiling at register level, pressure on off-chip BW
is reduced, however, ShM BW continues to be a bottleneck due to the limited capacity of RF.

They propose two techniques for improving DNN execution on GPUs, which work on the observation
that DNNs are resilient to both weight/neuron pruning and the use of low-precision weights. In the
baseline approach, a Q ×K weight matrix is multiplied with a K × N output matrix from the last layer.
This is shown in Figure 16(a). Their first technique termed “synapse vector elimination”, preprocesses
these matrices in 2 steps. In step 1, the synapses are reordered so that unimportant synapses can be
discarded without losing regularity of data structure. Taking the example of the weight matrix, since the
number of discarded synaptic weights (P ) is known beforehand, column swaps are performed to bring
the retained columns towards left side and discarded columns towards right side of the matrix. Then, the
matrix is partitioned at column K − P , so that the left side K − P columns and the right side P columns
show retained and discarded (respectively) synapse groups. This is shown in Figure 16(c). This step has
minimal overhead and is more efficient than naively copying the retained synapses into an extra buffer.
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In step 2, to reduce matrix-dimension, multiplication between weight and input is stopped at (K−P )th
column instead of stopping at the Kth column. Thus, their technique reduces the number of operations
in MM from Q × K × N to Q × (K − P ) × N , as shown in Figure 16(b). This technique improves the
efficiency of both storage and computation, as shown in Figure 15(c). For compensating for the discarded
synapses, the magnitude of retained synapses is increased to ensure that the expected value of optimized
and baseline output is close.
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The procedure for finding non-contributing synapses is shown in Table 12. By selecting the value of
threshold α, a tradeoff between accuracy and performance can be exercised.

Their second technique seeks to mitigate the issue of limited ShM BW. Here, before writing the register
values to ShM, multiple values are packed into one element. Similarly, before reading from ShM, the
values are unpacked, and then, computation is performed on them. Figure 17 shows the steps in their
second technique. Since off-chip BW is not a bottleneck, this technique is not applied on the off-chip link.
Since the original data is single-precision (32b), they study 3 low-precision formats for allowing packing.
These formats seek to remove the unimportant bits from the representation of a value. These formats are
described in Table 13 and illustrated through Figure 17.
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TABLE 12
Steps for finding non-contributing synapses [13]

Step 1 Find the correlation ρi,j of each synapse vector i with each remaining vector j
Step 2 If ρi,j exceeds a threshold (α), vector i is said to represent j
Step 3 Compute Ri as follows Ri =

∑N
j=1 F | F = 1 if ρi,j ≥ α and F = 0 otherwise

Step 4 The vector i with largest Ri is retained during “synapse vector elimination”, whereas those represented by the
retained one are eliminated.

Step 5 Repeatedly apply above steps on the rest of the vectors. Stop when all the vectors are either discarded or retained.

TABLE 13
Three low-precision formats used by Hill et al. [13]

IEEE 754
“half-
precision
format”

It uses a CUDA scheme for converting between half and single precision which uses custom hardware
for bit-conversion. However, the use of the half-precision format leads to slight performance loss due to
data-reformatting operations.

Deft-16 It is simply the 16 MSBs of single-precision format and conversion between the two formats requires only
bitwise and shift operations. By virtue of using seven mantissa and eight exponent bits, “Deft-16” achieves
reasonable dynamic range and precision.

Deft-16Q It allows MSBs of one value to be stored in LSBs of another value. Compared to Deft-16, Deft-16Q reduces
one “logical AND” instruction in the unpacking process, still, it provides much higher performance than
Deft-16.

To further reduce the reformatting overheads, they also discuss a specialized hardware unit which
performs unpacking in just one cycle. They perform experiments over a range of DNNs. Since modern
GPUs have many more 32b ALUs than 16b ALUs, naively using 16b storage and computation leads to
large performance loss. By comparison, their packing/unpacking based technique improves performance
by virtue of utilizing 32b ALUs. Overall, their techniques provide large speedup.

3.8 Coalescing and scheduling GPU kernels
Jain et al. [15] note that since interactive queries have strict deadlines, DNN inference for them requires
small batch-sizes. Since hardware resources are provisioned for dealing with the worst-case demand,
use of small batch sizes leads to low resource-usage efficiency and hence, financial losses. For example,
at interactive latency values, ResNet-50 achieves less than 25% of the peak throughput of V100 GPU.
As the ratio of peak compute throughput to peak memory-bandwidth increases, the problem of GPU
underutilization will exacerbate even further.

They first discuss two naive approaches for addressing this issue. (1) Time-multiplexing of CUDA
contexts on GPU allows interleaving of kernel execution. Kernels execute serially and not in parallel,
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and processes are preempted periodically. Context-switching involves flushing of execution pipeline and
hence, incurs large overhead. Due to this, they observe that with an increasing number of interleaved
processes, inference latency rises linearly. (2) Spatial multiplexing allows concurrent-overlapping kernel
execution. However, it cannot ensure performance-isolation and leads to unpredictability in execution
time. Further, kernels optimized for solo-execution provide lower performance when running concurrently
with other kernels.

Their proposed technique performs just-in-time coalescing of GPU kernels across multiple streams
and over time. Figure 18 illustrates working of their technique. Their approach is similar to how VLIW
(very large instruction word) compilers pack kernels for better utilization of system resources. Specifically,
conventional GPU programing (e.g., using CUDA) uses an early-binding approach where the thread-block
dimension is specified in the source-code itself. They propose using a late-binding approach where for a
kernel, only high-level parameters such as operators, the inputs, and latency constraints are specified.
Then, a just-in-time (JIT) compiler executes the kernels based on runtime information about the number
and requirements of concurrent kernels, GPU context, etc.
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Fig. 18. Out-of-order just-in-time compiler performs coalescing and reordering of kernels from different streams [15].

Their compiler also reorders queued kernels for (1) prioritizing streams having tight margin from the
deadline and (2) delaying kernels that may provide better packing efficiency when coalesced at a later
time. Coalescing latency is overlapped with computation latency of other streams. For ensuring isolation
and performance-predictability, the latency of each kernel is monitored and based on it, resource-allocation
of kernels is adjusted.

While VLIW compilers perform only ahead-of-time modification, their technique performs both ahead-
of-time and runtime tuning. Tuning involves adjusting the parameters of GPU programs. During runtime,
several small kernels are packed into a macrokernel which may be further optimized by applying
parameters obtained from an autotuning phase. For example, they cluster MM kernels having similar
dimension into one macrokernel. Running a macrokernel achieves higher resource utilization than time-
multiplexing and is effective also because the operations performed in DNN kernels are very limited.
Their technique improves throughput without violating latency constraints.

3.9 Mitigating GPU memory limitations by offloading data to CPU Memory
DNN training requires a significant amount of memory, which may exceed the memory capacity of
a single GPU. For example, VGG-16 (BatchSize=256) requires 28GB memory, which is larger than the
12GB memory capacity of Titan X. This forces the user to train the network with smaller batch-size or
parallelizing the training over multiple GPUs. Several researchers have proposed techniques for mitigating
memory capacity issues of GPUs by utilizing the memory resources of the host. These techniques and their
distinguishing features are shown in Table 14. For example, if the cost of computation is much lower than
the cost of storing/accessing its output, then repeating the computation provides benefit over storing its
results.

Rhu et al. [24] propose vDNN, a runtime memory management scheme for virtualizing the memory
utilization of DNNs over both CPU and GPU memories. They note that DNNs trained with “stochastic
gradient-descent” algorithm are designed using multiple layers. In DNN training, layer-wise computations
are performed such that their order remains fixed and is repeated for billions of training iterations. While
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TABLE 14
Works that offload data from GPU memory to CPU memory during training

Transferring intermediate data or parame-
ters to CPU memory

[7, 17, 24, 26, 29, 32, 35, 39, 57]

Use of CUDA stream [24, 36, 39, 57]
Unique features technique proposed for non-linear DNNs [28], use of high-BW stacked mem-

ory [29], use of unified virtual memory [40], mitigating memory fragmentation
issue [26], selecting sub-batch size [26], repeating the computation to avoid
saving its output [32, 35], using a single “tensor storage object” for error-terms
with same value [32]

training a network, current machine-learning frameworks allocate the memory for accommodating the
needs of all the layers because, in the back-propagation algorithm, gradient update is performed in a
layer-wise manner. The intermediate output of one layer produced during the FWP phase is termed as
feature map (fmap). These fmaps are later reused during BWP phase of the same layer for gradients
computation. Hence, all fmaps need to be present in GPU memory until the completion of the BWP phase.
This network-wide allocation approach (called baseline) avoids the need for costly page-transfer between
CPU and GPU over PCIe.

Although the baseline approach reduces data-transfer overheads, it increases the memory requirement
greatly. With an increasing number of layers, the memory reserved for fmaps grows even further. Since
the training is performed in a layer-wise manner, only a portion of allocated memory is required at a time
and thus, with baseline scheme, up to 80% of the allocated memory may not be used at a time.

They note that “feature-extraction layers” consume a much higher fraction of memory than the “clas-
sifier layers”, for example, “feature-extraction layers” consume 81% and 96% of the memory in AlexNet
and VGG-16, respectively. Further, in “feature-extraction layers”, intermediate fmaps and workspace (a
temporary buffer required for FFT-based CONV) require much higher memory than the weights. Hence,
vDNN focuses on fmaps of “feature-extraction layers”. In DNNs, fmaps of layer K, computed during
the FWP phase are reused only on reaching the same layer in the BWP phase. Since the reuse of fmaps
happens after tens to hundreds of milliseconds (e.g., 1200ms for the first layer of VGG-16(BatchSize=64)),
fmaps of DNNs stay in GPU memory for a long time without being reused.

In the vDNN technique, memory allocation is done for the layer that is currently being processed,
and the fmaps not required by the current layer are offloaded to CPU memory via PCIe. Then, the
offloaded fmaps are released to reduce the GPU memory usage, as shown in Figure 19(a). In non-linear
networks, multiple layers may consume the output fmaps of a previous layer. Hence, vDNN tracks these
dependencies using a dataflow graph and offloads fmaps of layer-K only when all consumer-layers have
used fmaps of layer-K. While performing BWP for a layer, vDNN releases the tensors that are not required
for training the BWP of the remaining layers. For example, output fmaps and output gradient maps of
layer K + 1 are not needed during BWP of layer K, since the gradient updates of layer K have already
finished. This is shown in Figure 19(b). Input fmaps and input gradient fmaps are not released since they
will be required in BWP of the previous layer.

vDNN prefetches offloaded fmaps of layer K and overlaps this with BWP phase of layer L (L > K)
to hide prefetch latency and bring the offloaded fmaps of a layer before its BWP phase starts. The layer
for prefetching is selected to ensure that its data comes neither too early nor late. vDNN works on top
of cuDNN and uses two CUDA streams for overlapping DNN computations with memory management
operations. Before offloading, a pinned memory portion is created in host memory, and then, the fmaps of
a layer are transferred over PCIe in a non-blocking manner, such that this is overlapped with FWP phase
of cuDNN. Prefetching of fmaps is performed in the opposite order of the offloading in FWP phase.

The choice of the best layer to offload depends on multiple factors, e.g., CONV algorithm and memory
needs of each layer, GPU memory size, and DNN throughput. Since the CONV algorithm which consumes
less memory (e.g., GEMM-based) also gives a lower performance, to balance these tradeoffs, they propose
two static policies and one dynamic policy for choosing the layer to offload. The motivation behind
designing the dynamic policy is that the static policies do not take into account the characteristics of DNN
and GPU. These policies are shown in Table 15.

Their technique lowers the GPU memory requirement of DNNs greatly and allows training a network
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Fig. 19. (a) Offloading previous layer’s input fmaps to CPU memory in FWP [24] (b) releasing input fmaps of previous layers in BWP
since they will not be reused

TABLE 15
Policies for choosing the layer to offload [24]

Policy Working
Static 1 This is a memory-efficient scheme which offloads and releases fmaps of all feature-extraction layers
Static 2 This is a performance-efficient policy that offloads fmaps of CONV layers and leaves fmaps of pooling/activation

layers in the GPU memory. Since CONV layers account for upwards of 70% latency in FWP/BWP phase of DNNs,
the offloading/prefetching latency can be easily hidden.

Dynamic Existing machine-learning frameworks use a profiling phase where the best CONV algorithm for each layer is
found using a cuDNN API. The dynamic policy enhances this profiling phase with extra passes for finding the
best layers for offloading and best CONV algorithm such that the performance is optimized and the total memory
requirements can be met.

with higher memory than the memory capacity of the GPU. Also, it incurs only small performance loss
compared to an oracle GPU having sufficient memory to store the whole DNN.

Chen et al. [26] note that the technique proposed by Rhu et al. [24] offloads data of either all the layers
or all the CONV layers, and thus, does not choose the layers wisely. They propose a technique which
performs data-transfer scheduling and CONV-algorithm selection intelligently. While decreasing the batch
size reduces memory consumption, it may affect accuracy. To avoid losing accuracy, their technique divides
a batch into several sub-batches. Due to this, training of a batch is completed in several passes, and the
gradients are aggregated from all the sub-batches.

The memory requirement is minimum (Mmin) when the sub-batch size is 1, and the CONV-algorithm
with least memory requirement is chosen. This CONV-algorithm is implicit GEMM since it does not
require any workspace. They present a technique for DNN training when the available memory is larger
than Mmin. Since the memory consumption is increased on both increasing the sub-batch size and using
more performance-efficient CONV-algorithm, they find an optimal value of them by performing iterative
profiling. During profiling, the execution time of a task and the transfer latency of its data are found.

The technique of Rhu et al. overlaps one data-transfer operation with one computation, and hence,
incurs larger latency and synchronization overheads. To avoid these, their technique overlaps one data-
transfer operation with several computations or vice versa. Their technique decides about the layers
to be offloaded. However, if the GPU memory becomes fragmented, then a suitable offloading scheme
cannot be found. In such a case, their technique offloads all data and re-loads the required data. Their
technique schedules offload/prefetch operations and selects a CONV algorithm for each layer with a view
to minimize the overall execution time without exceeding the memory budget. For every fast CONV-
algorithm, cost and benefit analysis is done, where the cost is the latency of offloading/prefetching, and
the benefit is the latency-reduction due to faster CONV. The CONV algorithm, with the largest value of
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benefit minus cost is selected. For the same memory budget, their technique incurs smaller performance
loss than the technique of Rhu et al. and also works well in the case of training on multiple GPUs.

Wang et al. [28] propose a memory management runtime for enabling training of non-linear DNNs on
GPUs whose memory requirement far exceed the memory capacity of GPU. Figure 20 shows examples of
non-linear connections. Let forward, and backward memory usage of layers i be Mf

i and M b
i , respectively.

Let peak memory requirement of the network be Mpeak. The ith tensor is shown as Ei and total number
of layers is L. For the baseline network-wide memory-allocation approach, Mpeak =

∑L
1 M

f
i +

∑L
1 M

b
i .

Clearly, the theoretical minimum memory requirement of the CNN is max(Mi) for i ∈ [1, L].
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Fig. 20. Non-linear connections in (a) ResNet (b) DenseNet and (c) Inception v4 [28]

In a non-linear DNN, they first identify the execution-order of different layers by taking into account
the interconnection (dependencies) between them. Table 16 shows the working of the first technique
which reduces Mpeak to

∑L
1 M

f
i +M b

L, thus achieving 50% saving in memory consumption. The challenge
in this technique is that since during training, millions of iterations of FWP/BWP phases are executed,
allocating/deallocating memory using cudaMalloc/cudaFree incurs large overhead. To avoid this
overhead, they allocate a large heap-based memory in the beginning and then, merely acquire/release
memory from this pool, which is equivalent to allocation/deallocation, respectively.

TABLE 16
Summary of the techniques of Wang et al. [28]

No. Technique Working Mpeak

Baseline
∑L

1 M
f
i +

∑L
1 M

b
i

1 Deallocation While doing BWP phase for layer-k, it deallocates Mf
i and Mb

i where k + 1 ≤
i ≤ L. This is because these are not required for the execution of successive
layers.

∑L
1 M

f
i +Mb

L

2 Offloading It offloads data of selected layers from GPU memory to CPU memory and later
prefetches them. Due to the insignificant memory consumption of FC, softmax,
and dropout layers, they are not offloaded. Further, LRN, BN, activation,
and pooling layers together account for 50% of the memory needs, but their
computations are a much smaller fraction of the total computations. This
prohibits effective overlapping of computing and data-transfer operations.
Hence, it offloads data of CONV layers only. Specifically, forward outputs
of CONV layers are transferred to pre-allocated “pinned CPU memory” and
then, the corresponding GPU memory is released.

∑L
1 (M

f
i | i 6∈

offloaded) +Mb
L

3 Release
and
recompute

Since LRN, BN, pooling and activation layers account for 50% of memory but
a much lower fraction of computations, this technique frees them after FWP
phase and recomputes them during BWP phase. This is done only if the highest
memory needs of any layer cannot be met by the present memory budget. This
helps in exercising a balance between performance and memory efficiency.

max(Mi)

4 Faster
CONV

If after applying the above three techniques, some memory is still left, a faster
implementation of CONV is selected as long as its memory requirement can
be met.

The working of the second technique is shown in Table 16. Both offloading and prefetching operations
are overlapped with useful computations. Since data-transfer over slow PCIe bus may create a bottleneck,
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they use a “tensor cache” which stores tensors on GPU DRAM to reuse them maximally. Due to the
“head-to-tail” and then, “tail-to-head” execution pattern of BWP phase, most recently generated data are
reused first and hence, the tensor-cache is managed using “least-recently used” replacement policy. On
using these, data-transfers on using offloading/prefetching happen only when the GPU memory is not
sufficient. Table 16 also shows the working of third and fourth technique. For the same memory budget,
their techniques allow training with much larger batch size than that allowed by Torch, Caffe, TensorFlow,
and MXNet. Using their techniques, ResNet2500 CNN with 10,000 basic layers can also be trained on a
GPU with 12GB memory.

Jin et al. [32] present a technique for enabling use of higher batch size in CNN training, which reduces
data-communication during distributed training. Figure 21 presents an overview of their technique. In
phase one, their technique divides the input image into multiple patches and processes them indepen-
dently before entering subsequent stages of CNN. This is illustrated in Figure 22. The splitting is applied
in R CONV layers. With increasing R and decreasing patch size, the overall model accuracy reduces and
hence, the values of R and patch size are chosen carefully. In phase two, topological sorting is performed
on compute nodes of the dataflow graph for serializing the computations. Analogously, the computation
graph for BWP is also serialized.
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Fig. 21. Memory management approach in the technique of Jin et al. [32]
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In phase three, every tensor in the computation graph is mapped to a “storage object” (SO) which
refers to a contiguous memory region where one or more tensors are used. For every SO, a “reference
counter” is maintained. Since the input of “rectified linear unit” (ReLU) layer is not required during BWP
phase of this layer, if no other tensor references the SO of this layer’s input tensor, the input tensor’s SO
is replaced with the output tensor’s SO. Further, on applying chain rule for obtaining back-propagation
error, the value of all the error terms is same, and hence, the same SO is used for them.

Notice that there is no need to plan the beginning of offload operation since it happens right after
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computation in FWP phase. Similarly, since the prefetch operations end right before the computation in
BWP phase, no planning is required for the end of prefetch also. Hence, their technique plans only the end
of offload operations and beginning of prefetch operations. The planning is done such that communication
should not slow-down computation, which happens when the product of estimated execution time and
CPU-GPU link (PCIe or NVLink) bandwidth is more than the total data size to offload. Similarly, prefetch
starts only when the product of layer execution time and link bandwidth exceeds the data size to prefetch.
Their technique increases the trainable batch size of ResNet to 2X and that of VGG to 6X, with an only
small reduction in throughput. Usually, only a few layers prohibit trainability of CNN due to their high
memory requirements. Image-splitting in their technique reduces the memory requirements of these layers
and also allows different patches to reuse the same workspace. By virtue of this, their technique improves
the trainability of CNNs.

“High-bandwidth memory” (HBM) is a DRAM variant which is designed with multiple vertical
memory dies. The memory bus of HBM is much wider (4096-bit) than that of GDDR5 memory (384-
bit). Due to this, HBM provides high bandwidth (up to 512 GB/s) despite working at a low frequency
(1GHz). AMD Radeon Fury GPU has four stacks of memory chips with a total in-package global memory
capacity of 4GB. Thus, compared to other GPUs such as NVIDIA K80 with 24GB memory, the capacity of
HBM is much smaller due to thermal and technological constraints.

Zhu et al. [29] note that on using minibatch-size of 256, training of AlexNet becomes very slow on
the HBM-enabled GPU since the fmaps cannot be stored in HBM due to its limited capacity. When GPU
memory becomes insufficient, OpenCL runtime allocates memory buffers in the host memory. Afterward,
read/write operations are performed to this buffer over PCIe, which provides much lower bandwidth
than HBM.

They present a technique to mitigate this issue. Due to the layer-wise training, in BWP phase, the output
of only one layer is required when the next layer is being processed. Hence, their technique offloads data
of layers that are required in the future to CPU memory and prefetches their data before they are required.
Since the training of a CONV layer takes larger time than the data-transfer between CPU and GPU, the
data-transfer latency is easily hidden. Data-transfer is handled by a DMA engine and the double-buffering
scheme is used. Their technique works using two command queues, which are shown in Figure 23. At the
time of training layer k, the data of layer k−1 is copied from GPU to CPU memory and that of layer k+1 is
copied from CPU to GPU memory. When the data of layer k+1 arrives, the second queue notifies the first
queue to begin training layer k+1. When layer k+1 has been processed, the first queue notifies the second
queue to begin data-transfer. In this way, their technique reduces memory requirement to the size of the
double-buffer. They apply their technique on all CONV layers of AlexNet. They evaluate their technique
on AMD Fury X GPU and show that it leads to higher performance than that achieved by NVIDIA K40
GPU, which has 12GB memory.

Awan et al. [40] propose a technique to address memory capacity limitations in DNN training. They
note that if a batch of training samples requires 1GB memory, one needs to allocate 1GB of CPU memory
as the “staging area” and 1GB of GPU memory for the training itself. Further, host-to-device copies of 1GB
of data need to be handled. Also, since cudaMalloc and cudaFree calls are blocking, their use during
training for saving GPU memory leads to further overhead.

In baseline design, communication happens between file-system⇐⇒ host-memory, between host⇐⇒
device memory and between device ⇐⇒ device memory. They propose primitives for communication
between file-system ⇐⇒ unified-memory and within unified-memory itself. Figure 24 contrasts baseline
design with their proposed approach. They further design an “interception library” which redefines the
behavior of CUDA memory allocation and management calls.

They use cudaMallocManaged to allocate a unified memory buffer which can be accessed by both
the file system and CUDA kernels that need to process this data. This saves GPU memory and allows
overlapping part of the computations with driver-managed copies. CUDA kernels work directly on the
“managed buffers”. Since the size of trained DNN is small, transferring it to file-system at the end of
training does not incur overhead. Still, the use of cudaCpuDeviceId hint for setting the preferred location
of this buffer through cudaMemAdvise improves the performance of some large models.

They further note that a naive “managed-to-managed” (M2M) transfer takes higher latency than
a “device-to-device” (D2D) transfer on the same GPU. For cudaMemcpy, prefetching the destination
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buffer offers higher performance for an M2M transfer but prefetching the source buffer has no impact
on performance. This is because the source buffer results from a previous kernel and hence may be
already residing in the GPU memory. Further, undue use of cudaMemPrefetch calls can create overhead.
Since the source buffer of one layer becomes the destination buffer of previous layer during FWP phase,
prefetching the destination buffer of copy operation improves performance by decreasing GPU page faults.
To improve performance of M2M copy operations, they propose marking the source buffer as “consumed”
and offloading it at the time of low GPU memory. For this, cudaMemAdviseSet-PreferredLocation
is used and cudaCpuDeviceId is passed as the “device” option to the cudaMemAdvise call on the
“source buffer”. Since buffers offloaded during the FWP phase are required during the BWP phase, these
buffers are prefetched for any M2M copy operations.

Use of unified (managed) memory improves productivity by virtue of offering a simplified program-
ming abstraction. It also reduces redundant code since separate versions of each function for CPU and
GPU are not required. For CNN training workloads whose memory requirements exceed GPU memory
capacity, their technique provides a large improvement in performance. The limitation of their technique is
that the features of CUDA 8 and 9 exploited by them such as unified memory, prefetching and automatic
page-migration work only with Volta and Pascal GPUs.
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4 OPTIMIZING DL ON DISTRIBUTED GPUS

Data/model-parallelism and pipelining: There are three broad approaches for performing distributed
training of DNNs [70].
1) Data-parallelism: Here, same DNN model runs on each system but is fed with different portions of the

training data. The challenge in data-parallel training is that it requires the weights and activations to fit
inside the limited GPU memory.

2) Model-parallelism: Here, the DNN computations are divided across multiple systems, and same training
data is fed to all the systems. This allows training of very large models since the entire CNN is not
stored in one system. However, it leads to extra communication after each layer.

3) Pipelining: In the pipelining scheme, one or more consecutive layers of a CNN form a chunk. The layers
in a chunk are executed on one system, and thus, different systems compute the CNN in a pipelined
manner.
Gradient communication topologies for parameter synchronization: In data-parallel DNN training,

synchronization of model parameters can be implemented using two approaches.
1) Parameter server (PS): PS approach, shown in Figure 25(a), uses the master-slave paradigm where at least

one server node manages the parameter updates centrally. In each iteration, every worker computes
its gradients and sends them to the PS node for accumulation and model update. Then, the PS node
sends updates parameters to every worker. PS facilitates the use of flexible synchronization schemes
and allows training very-large models. However, when the number of workers (clients) become large,
BW of PS becomes a bottleneck.
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2) Allreduce approach: Allreduce is an example of “collective communication operation”. Here, all workers
communicate between each other using an allreduce operation for exchanging the local gradients. This
provides accumulated gradients to each worker which are used for updating the parameters locally. By
virtue of using peer-to-peer communication, allreduce-based approach distributes the communication
cost between all the workers. Allreduce can be implemented in different ways, some of which are shown
in Figure 25(b)-(d). The challenge with the allreduce approach is that it requires physical connections
between many more pairs of workers than what the PS approach requires.
Synchronization approaches: In data-parallel training, multiple strategies can be used for aggregating

the results of different workers. At the two extremes are the following modes:
1) Synchronous mode: Here, PS waits till it has received the gradients from all the workers. Then, gradients

are applied to the current weights, and the updated weights are sent to all the worker nodes. By virtue
of using accurate gradient estimates, this approach leads to fast convergence. However, this approach
may become bottlenecked by the slowest worker, and this problem becomes worse in case of network
congestion.

2) Asynchronous mode: Here, PS updates the parameters each time it receives the gradients from a worker.
This improves the throughput compared to the synchronous mode. However, the parameters used by
every worker may be different, which degrades the quality of gradient estimates [71] and increases the
number of iterations required for convergence.

Table 17 shows the projects that optimize GPU-based distributed DNN training. The challenge in
distributed training is that especially for large-sized models, the communication latency far exceeds the
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computation latency and hence, effective approaches for hiding/minimizing communication overheads
are essential. The strategies used for these are shown in Table 17. For example, “double buffering scheme”
uses two buffers such that one buffer is filled with data, and the data of the second buffer is used for
computation. In every phase, the role of buffers is reversed, which helps in hiding the communication
latency.

TABLE 17
A classification of works that perform DNN training using distributed GPUs

Category References
Distributed DNN training [7, 21, 22, 26, 37–39, 41, 42, 44–49, 51, 54, 57]

Data-parallelism or model-parallelism
Data-parallelism [7, 25, 26, 37–39, 42, 44–49, 51, 53, 54, 56, 57]
Model parallelism [44, 54, 72]
Pipelining [44]

Use of parameter server or allreduce
Parameter server [7, 44, 46, 49, 51, 53, 57]
Allreduce [37, 42, 45, 47, 48, 56]

Mitigating data-communication overheads or BW bottlenecks
Mixed/low-precision [13, 21, 37, 42, 43]
Double buffering [5, 7, 20, 59]
Performing synchronization . . . when the total size of data exceeds a threshold [37, 43], after multiple layers [39], with

stale parameters [30, 49]
Avoiding PS from becoming a
bottleneck

Improving PS access efficiency by using pre-built indices, which avoids the need of
accessing arbitrary parameter values on the GPU PS [7], allowing communication
between clients to remove bottleneck due to centralized PS [49]

Reducing amount of data-
transfer

Transferring only required data [38, 47], prioritizing communication of items that are
most important for convergence [49], storing parameter cache in GPU memory [7], using
sufficient-factor communication instead of transmitting weight gradient tensor [49], by
intelligent partitioning of CNN layers which are mapped to different machines [44, 51],
Storing weights persistently [8, 35, 46]

Others Choosing CNNs with lower number of parameters (e.g., NiN and GoogleNet) than others
(e.g., AlexNet) [48], processing multiple blocking send/receive operations by a tree-
reduction operation [46], reducing GPU memory consumption by performing gradient
aggregation on the host [39], packing smaller-width values to improve BW utilization
[13], using GPUs located in the same data-center and not at different geographical
locations [30], use of high-BW stacked memory [29]

In this section, we discuss works that perform parameter synchronization using PS approach (Section
4.1). A variant of this is where gradient-accumulation is performed on the host and thus, no GPU acts as
the PS (Section 4.2). We then discuss works that use allreduce approach (Section 4.3). Then, approaches
for using mixed-precision training (Section 4.4), optimizing pipeline-parallel training (Section 4.5) and
scheduling techniques for DL jobs (Section 4.6) are discussed. Finally, a technique for reducing financial
cost of training (Section 4.7) and comparison of distributed training on GPUs with that on CPU/Xeon-Phi
(Section 4.8) are summarized.

Several of these works overlap gradient-accumulation of upper layer with BWP of a lower layer [37,
39, 46, 47, 49]. In CNNs, initial (CONV) layers have much lower parameters than the last (FC) layers. As
BWP computations progress from “tail-to-head” direction, gradient-communication and aggregation of
FC layers get over by the end of BWP phase even if it takes a large amount of time. For CONV layers, this
takes much less time and hence, happens quickly after BWP phase. Hence, the layer-wise overlap scheme
is especially effective for CNNs.

4.1 Using parameter server approach
Cui et al. [7] present optimizations to PS design for enabling training on GPUs attached to different servers.
In the baseline design, parameter cache is stored in the CPU. They propose storing it in GPU memory,
which allows the PS to overlap data-movement with GPU computations. Also, read/update functions can
happen inside GPU memory itself, and updating of the parameter cache can be parallelized.

Due to the SIMD nature of GPU, accessing arbitrary parameter values is inefficient. Since training
happens in iterations, they propose using pre-built indices for the whole batch which allows parallel
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gather/update operations on the parameters referenced in a batch. This improves the efficiency of
accessing PS. Furthermore, currently-unused data are moved from GPU memory to CPU memory. Due to
the iterative nature of training, the same parameter data are accessed in each iteration and based on this,
data transfer can be done proactively in the background to avoid its performance impact. Lastly, the data
that will not be reused, such as intermediate results, is deallocated. Their technique reduces the stalls due
to data-movement and synchronization.

They also observe that although performing parameter updates asynchronously avoids synchroniza-
tion overheads, it increases the time to reach convergence due to lower quality of training. Their technique
achieves more than 80% strong scaling efficiency on 16 GPUs. Also, the training throughput of their
technique with four GPUs is higher than that achieved using 108 CPUs.

Zhang et al. [49] present techniques for scaling DNN training on networks with low bandwidth,
e.g., Ethernet connection. They note that in the client-server architecture, communication happens only
between the client and the server. They add a hierarchy in every worker node, which allows multiple client
threads to co-exist inside one worker machine. This allows using both CPU and GPU workers by mapping
every worker thread to a CPU or a GPU. Further, communication is allowed both between “client and
server” and between two clients. This allows using dedicated data-transfer schemes for synchronizing the
parameters. It also avoids the situation where PS becomes a bottleneck in communication. Figure 26 shows
an overview of their technique.
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Fig. 26. Overall architecture of technique of Zhang et al. [49] (WBWP= Wait-free BWP, SAC= structure-aware communication)

Their technique overlaps communication of gradients of upper layers with BWP of lower layers and
this is referred to as “wait-free BWP” in Figure 26. They discuss the “sufficient factor communication”
approach, where instead of directly sending weight gradient tensor to the master node, it is decoupled
in two vectors. These vectors are broadcast to other workers, and others’ vectors are received from them.
Then, the weight gradient tensor is reconstructed from them, and updates are applied locally on each
worker. Compared to transmitting the whole matrix, this approach reduces the communication overhead
significantly. Also, since computation is much cheaper than communication, the extra computations for
finding significant factor is negligible. However, the cost of “sufficient-factor broadcasting” increases
quadratically with the rising number of nodes due to use of the peer-to-peer data-exchange approach.
Hence, they use an adaptive communication scheme, which works as follows: (a) Since parameters of
CONV layers are sparse, parameters are communicated directly via the centralized PS (b) Since the
parameters of FC layers are dense and have “low-rank property”, a choice is made between PS and
“sufficient-factor broadcasting” depending on the batch size and the number of workers.

For data-parallel CNNs, iterative-convergence based algorithms can converge even when their param-
eters see synchronization delays, as long as the delays are bounded. Based on this “stale synchronous
parallel” (SSP) consistency model is used which saves communication costs by allowing updates of
parameters with bounded staleness. They also use a bandwidth manager which sends dirty model
parameters and model updates as soon as possible without exceeding the network BW budget and allots
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network BW based on the contribution of a message to the convergence. Their technique reduces the time
and number of machines required for achieving the same level of accuracy as previous techniques.

4.2 Using the host for performing gradient accumulation
There are five steps in data-parallel training over multiple GPUs:
S1: Every GPU reads a minibatch and executes FWP phase.
S2: Every GPU executes BWP phase for computing the gradients based on its learnable parameters
S3: The gradients of the other GPUs are collected at the master GPU (GPU 0), and their average value is

computed.
S4: Computed gradients of master GPU are used for updating its “learnable parameters”.
S5: Master GPU broadcasts its learnable parameters, and the remaining GPUs update their parameters to

these values.
Le et al. [39] present a technique for utilizing the host to accelerate training on the GPUs. They seek

to alleviate the impact of communication steps (S3 and S5), which bottleneck the scalability of parallel
training. They note that gradients of a layer do not change after computation during BWP phase. Hence,
gradient collection need not be postponed until the end of the BWP phase. Further, gradient collection
can be done with the help of the host CPU. Based on these, they overlap S3 (gradient collection) and S5
(broadcasting of parameters) with S2 (BWP).

For this, they use 3 GPU streams. Computation of loss function in FWP and gradients in BWP and
updating of parameters happen in the “default stream”. The “deviceToHost stream” is utilized for sending
local gradients to the host and then issuing a function on the host for collecting the gradients. The
“hostToDevice stream” is utilized for broadcasting the global gradients to GPUs. Data-transfers happen
sequentially since at most one transfer in one direction can happen at any time. Their technique works in
3 major steps:
SP1: Every GPU reads a minibatch and executes FWP phase.
SP2: Every GPU executes BWP phase.
SP3: Every GPU updates its parameters.
Gradient collection during SP2 happens on the host, and after accumulation, gradients are broadcast
to all the GPUs. Thus, on completion of BWP, each GPU has the same gradients and updates its
parameters concurrently with other GPUs. Hence, their technique does not require any PS. When the
CPU is aggregating the gradients, GPU goes on to calculate the gradients of subsequent layers.

They further note that in the baseline scheme, communication with host happens after every layer
using a synchronization barrier. This, however, incurs large overhead for deep CNNs, such as ResNet-
152 which has 152 layers. To mitigate this issue, they propose performing synchronization after multiple
layers, called a group. The limitation of this approach is that gradient collection for all the layers in a group
happens only when the last layer in the group completes its BWP phase. This increases the overhead of
gradient aggregation.

The number of layers in different groups can be different, although, in practice, they use the same
layer-count in each group to shrink the search-space. This layer-count is found heuristically by running a
few initial training iterations and choosing a value that minimizes the execution time of the BWP phase.
Compared to baseline Caffe, their technique improves the training speed of AlexNet, GoogleNet, VGG-
16, and ResNet-152 and achieves weak-scaling efficiency above 90% on four GPUs. Further, performing
gradient aggregation on the host reduces memory consumed on GPU, which allows increasing the batch
size.

4.3 Using allreduce approach
Iandola et al. [48] accelerate DNN training on a cluster of GPUs. They perform experiments using 32 to
128 GPUs. With 32 nodes, the interconnect speed approaches that obtained with connecting all nodes in
a portion to a single Infiniband-class switch. They choose NiN and GoogleNet for training since these
CNNs have a much lower number of parameters than other networks such as AlexNet. During training,
no communication is required during FWP. During BWP, every GPU computes a sum of the weight
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gradients for its mini-batch, and finally, the weight gradients of different GPUs are added. Accumulation
of local gradients can happen using a PS or an allreduce operation. The allreduce operation is performed
using a binomial reduction tree (refer Figure 25(b)) where the communication latency increases as the log
of the number of GPUs. By comparison, with PS, the communication latency increases linearly with the
number of GPUs due to serialization of communication with PS. Thus, reduction trees incur lower latency
of communication than PS. Compared to single-GPU, on 128 GPUs, their technique provides 47× and 39×
speedup while training GoogleNet and NiN, respectively.

Awan et al. [47] present optimizations to Caffe to scale it to clusters with multiple GPUs. For avoiding
unimportant data-transfer between CPU and GPU, they transfer only essential data-items across the
processes by utilizing existing GPU-based buffers. For optimizing file access operations, each process
runs a thread and maintains separate queues. These threads can concurrently read data from a parallel
file system such as Lustre. This is more efficient than transferring images with MPI-level data-exchange.
The parallel reader approach can be utilized along with ImageDataLayer and “lightning memory-mapped
database” (LMDB) of Caffe, which scales well till 160 GPUs. Further, CUDA-aware MPI broadcast is used
in data-propagation phase, and MPI reduce is used for the gradient aggregation.

To increase the overlap between computation and communication, the weights and gradient tensors
are transmitted on-demand instead of transmitting all the tensors in a single operation. Then, “non-
blocking collective operations” of MPI-3 are used for overlapping data-transfer with compute operations.
Specifically, all the non-blocking broadcast operations are performed at the beginning and the Wait
operation of lth broadcast operation is placed right before lth FWP of a layer that requires those data.
This is shown in Figure 27(b) and is contrasted from the naive approach shown in Figure 27(a).
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Fig. 27. (a) Naive non-blocking communication for data-propagation (b) Overlapped data-propagation with FWP [47]

They further note that inter/intra-node hierarchical collective communication is not efficient in case
of GPU-based communication since a node has at most two to four GPUs. To enable efficient reduce
operation, they propose a hierarchical design where the “lower-level communicator” may be spread
over multiple nodes. Figure 28 shows a hierarchical communicator where the lower-level communicator
spreads over two nodes. The algorithms for communicators at lower-level and upper-level can be selected
at runtime. For example, when process-count is large (e.g., > 64), binomial tree-based reduce is used
in “upper-level communicator,” and chunked-chain scheme is used in the “lower-level communicator”.
The chunked-chain scheme works as follows: The last process of the chain splits the buffer into multiple
chunks and forwards the chunk to its left-side process. This process performs a reduction of the chunk
with its own chunk and sends it to its left-side process. Continuing in this manner, the chunk arrives at
the root. Thus, the chunked chain approach seeks to overlap communication and reduction of consecutive
chunks in a large buffer. Their optimized Caffe implementation offer 133× and 2.6× improvement over
OpenMPI and MVAPICH2 (respectively) on 160 GPUs.

You et al. [46] mitigate scaling limitations of “elastic averaging stochastic gradient descent” on a cluster
of GPU. They find that communication of DNN parameters between CPU-GPU (i.e., CPU sending global
weight to GPUs and receiving local weights) incurs much higher overhead than communication of a batch



34

1

2
3

4

CPU

PLX

3 4

PLX

1 2

CPU

PLX

7 8

PLX

5 6

Node 1 Node 2

Lower level Communicator (Spans Two Nodes)

Upper Level Communicator (Binomial)

Fig. 28. A hierarchical communicator with chain-binomial combination [47]

of training data between CPU-GPU in each iteration. This is because the weights of a CNN are much
larger than the training data. To reduce the communication overhead, they process multiple blocking
send/receive operations by a tree-reduction operation. Further, weights are stored persistently in GPU
memory since they are used in every iteration and their total size is less than the memory capacity of
GPU. For larger datasets such as ImageNet, the total training data is much larger than the GPU memory
capacity, and hence, training data are not stored in GPU memory but are communicated on-demand.
Finally, since inter-GPU communication is independent of the FWP/BWP on GPU, they are overlapped.
In the baseline design, communication overhead was a bottleneck, but their optimizations remove this
bottleneck.

Mikami et al. [42] perform training of ResNet-50 over a cluster of GPUs, where the GPUs are connected
in 2D torus topology, which is shown in Figure 29. In distributed DNN training, the use of too small mini-
batch size increases the frequency of synchronization between workers. This increases the communication
overhead and the time required for completing a fixed number of epochs. Increasing the mini-batch size
decreases the variance of gradients by averaging the gradients in mini-batch and thus, estimates the
gradients with higher accuracy. It increases the progress rate of the algorithm but reduces the inference
accuracy. They employ strategies for using large batch-size without loss of accuracy. Further, they propose
a 2D-torus implementation of allreduce operation which works in three steps: (1) horizontal reduce-scatter
(2) vertical allreduce and (3) horizontal all-gather. Figure 30 shows these steps for a cluster with 4 GPUs
organized in 2D torus topology with a 2x2 grid.
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Fig. 29. 2D torus interconnection between the GPUs [42].

If there are P and Q GPUs in the horizontal and vertical dimension respectively and a total of G GPUs,
then, the number of inter-GPU operations are 2(P-1) for 2D-torus-based allreduce and 2(G-1) for ring-
based allreduce. While the number of inter-GPU operations is the same in both hierarchical and 2D-torus
allreduce, the data size of step (2) of the 2D-Torus allreduce is P times less than that of the hierarchical
allreduce. On a cluster of 3456 V100 GPUs, their technique completes training of ResNet-50 in 2 minutes
and achieves the top-1 accuracy of 75.29%

Zhao et al. [45] present linear pipelining based collective communication operations viz., broadcast,
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reduce, and allreduce. It works by dividing a long message into small chunks. A GPU obtains a chunk
from the previous GPU over DMA1 and also sends a chunk to the next one over DMA2. Communication
of chunks happens over different links, and once the pipeline reaches a steady state, the whole network is
utilized.

Figure 31(a) shows broadcast operation assuming that GPU0 is the source. In step 1, chunk ‘P’ is
copied from GPU0 to GPU1. After this, in every step, GPU1 obtains a chunk from GPU0 and sends a
chunk to GPU2, over different links. Figure 31(b) shows the reduce operation assuming that aggregation
is performed on GPU2. In step 1, chunk P0 is written to a buffer on GPU1. Then, reduction operation is
performed between P0 (received) and P1 to obtain P’. In step 2, GPU1 receives Q0 from GPU0 and reduces
to Q’, and also sends P’ to GPU2 which reduces it to P”, and so on.

P2 Q2 R2 S2

P0 Q0 R0 S0

P1 Q1 R1 S1 P’’ Q’’ R’’ S’’

P’ Q’ R’ S’

P2 Q2 R2 S2 P’’ Q’’ R’’ S’’

P’’ Q’’ R’’ S’’

MEMCPY

COMPUTE

MEMCPY

COMPUTE

GPU0

GPU1

GPU2

P0 Q0 R0 S0

1 2 3 4
5 6 7 8

2 3 4 5

6 7 8 9

P’’ Q’’ R’’ S’’

P1 Q1 R1 S1

P’ Q’ R’ S’

P0 Q0 R0 S0

1 2 3 4

MEMCPY

GPU1

COMPUTE

2 3 4 5

MEMCPY

COMPUTE

GPU2

GPU0

P Q R S

P Q R S

P Q R S

1 2 3 4

2 4 53

GPU0

MEMCPYGPU1

MEMCPYGPU2

1

2

3

4

GPU Stream 0

GPU Stream 1

(a) broadcast

(b) reduce (c) allreduce

TIME

TIME TIME

3 4 5 6
Sent 

From GPU2

Data-transfer over two GPU streams

Fig. 31. Working of (a) broadcast , (b) reduce and (c) allreduce on three GPUs [45]

Although allreduce can be implemented as a sequence of reduce and broadcast operations, implement-
ing it as a single instruction is more efficient since it requires filling the pipeline only once. Figure 31(c)
shows the workflow of the allreduce operation. First, P0, P1, and P2 are reduced to P” as discussed above.
Then, P” is broadcast to GPU1 at step 5 and GPU2 at step 6. Since the outgoing DMA of GPU0 is utilized
for sending S0 in step 4, communication of P” can happen in step 5 only. Processing of Q”, R”, S” happens
similarly.

Although PCIe allows full-duplex transfer between two ends, every PCIe end device possesses only
one input and output port. Due to this, contention happens when multiple GPUs send to a single GPU.
Likewise, every PCIe switch has only input, and the output port and inter-switch communication in
the same direction lead to contention on the PCIe bus. It is well-known that the data-transfer delays
interrupt pipelining. In minimum-spanning tree based collective communication, transfer between parent
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to children leads to competition for the same PCIe bus, which interrupts pipelining by creating data-
transfer delays. Similarly, in bidirectional exchange, inter-switch data-transfer leads to contention in one
direction. By comparison, in their technique, GPUs are connected in a chain, and dataflow happens in
one direction. Hence, their technique utilizes network bandwidth optimally and also does not interrupt
pipelining. Further, in their technique, the cost of collective operations is independent of the number
of GPUs. For training of large CNNs, their technique outperforms “minimum-spanning tree” and
“bidirectional based communication”.

4.4 Using mixed-precision approach
Jia et al. [43] present techniques for improving the efficiency of distributed training on GPU clusters.
“Layer-wise adaptive rate scaling” (LARS) approach uses a local learning rate for every layer which is
multiplied with the gradients. It enables the use of larger mini-batch size in DNN training. They note that
on using FP16 data with LARS, the learning rate goes beyond the dynamic range of FP16 format. Then, due
to the “vanishing gradient” problem, the training process is stalled. Hence, they propose mixed-precision
training where the FWP/BWP phases operate on FP16, whereas LARS is performed on FP32 weights and
gradients. This enables using large mini-batch size (e.g., 64K) without losing accuracy. Further, to improve
accuracy, they remove weight decay on the bias and BN; and add BN layers after Pool5 layer in AlexNet.

The reason for poor scalability of ring-based allreduce is that with M GPUs, it divides the data on
every GPU into M portions and performs the reduction in M − 1 iterations. With increasing M , both the
message-size and BW usage efficiency are reduced. Also, the gradient tensor size varies across layers, and
the gradient tensors of CONV layers are much smaller than those of FC layers. Their technique packs the
gradients in a pool and performs allreduce operation only when the pool size exceeds a threshold (γ).
This improves throughput at the cost of latency since tensor-packing prohibits parallelization of gradient
accumulation of last few layers and BWP of initial layers. Reducing γ lowers the latency but degrades
the efficiency of allreduce operations. They propose “hierarchical allreduce” operation where Q GPUs are
grouped and then, all-reduce operation is performed in three steps, as shown in Figure 32: (1) reduce
across GPUs of a group and save the interim-results at the master-GPU of the group (2) perform ring-
based allreduce between the groups (3) broadcast the final result in every group. By virtue of reducing
computation steps, this approach is more efficient in latency-sensitive scenarios, where there are many
GPUs, and tensor-size is small. For the cluster of 1024 GPUs, they use Q = 16.

Intra-ring over 

PCIe / NVLink

Inter-ring over 

GPU Direct RDMA

Broadcast over 

PCIe / NVLink

Fig. 32. Three-step allreduce approach for performing gradient accumulation in a distributed system with GPUs [43] (RDMA =
remote direct memory access)

They observe that ring-based allreduce performs better for FC layers since they have many more
weights, whereas hierarchical allreduce works better for CONV layers which have only a few weights.
Hence, they propose hybrid all-reduce, where one of the two allreduce strategies are intelligently selected.
They use a cluster with 256 machines, each with eight P40 GPUs connected using PCIe. Each machine has
a Mellanox ConnectX-4 100Gbps card. Machines communicate with each other using RDMA. For direct
communication between GPUs of different nodes, GPUDirect RDMA (GDR) is used. On 2048 P40 GPUs,
their technique completes AlexNet training on ImageNet in 4 minutes with a top-1 accuracy of 58.7%.

Sun et al. [37] present techniques to accelerate distributed training of DNN on GPU clusters. They use
two clusters: a cluster with 16 machines, each having 8 Pascal GPUs and a cluster with 64 machines,
each having 8 Volta GPUs. The GPUs of a machine connect using PCIe. The machines of a cluster
connect using 56Gbps InfiniBand and also have a distributed file system. For distributed training,
two frameworks are used: PyTorch-0.4 and their in-house I-system which use Gloo and OpenMPI-3.1
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(respectively) as communication backend. Inter-node communication is supported using RDMA in both
Gloo and OpenMPI.

Figure 33 shows the traditional approach for distributed training of a DNN. Here, an allreduce
operation is performed on the gradients of all the layers. NCCL is a library which provides primitives
for multi-GPU collective communication such as allreduce. They find that for allreduce operation, NCCL
provides much higher bandwidth than OpenMPI. But even with NCCL, for both PyTorch and I-System,
the speedup remains low due to communication latency.

Fig. 33. Traditional approach for training DNN on a distributed system [37]

They further explore mixed-precision training, shown in Figure 34, which uses FP32 values for
“model update” phase and FP16 parameters and gradients for FWP/BWP phases. NVIDIA’s tensor
cores perform mixed-precision “matrix multiply and accumulate” computations in a single operation.
For FP16 operations, tensor cores can provide between two to eight times speedup over FP32 operations.
Although mixed-precision approach reduces data-transfer overheads and allows doubling the batch-size,
the speedup is much lower than the ideal speedup. Mixed-precision training also incurs the overhead of
conversion between FP16 and FP32.
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Fig. 34. Mixed-precision training which performs allreduce operation on FP16 gradients [37]

Further, they overlap the transfer of gradient of layer-k with BWP phase of layer-j (j < k), as shown
in Figure 35. Even on adding this “communication-computation pipelining” optimization, the speedup
remains lower than the ideal speedup. This is because on doing allreduce on small-size gradients, the
network is not fully utilized. Also, due to their huge number of parameters, CNNs such as AlexNet lead
to high network traffic.

To tackle these challenges, they propose a communication backend for the I-system, along with some
optimizations. Firstly, it uses “lazy allreduce” which combines several allreduce operations into one
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Fig. 35. Layer-wise overlap of communication and computation [37]

operation while incurring only small GPU memory copy overhead. Specifically, as the gradients of a
layer are computed in the BWP phase, the baseline design allocates a separate GPU memory space for
every gradient. In “lazy-allreduce” scheme, the gradients get placed in a memory pool in the order that
they are produced. Then, the allreduce operation is actually performed only when the pool is filled to
more than a threshold size. Using lazy-allreduce along with above-mentioned optimizations, they achieve
near-ideal performance for the training of ResNet. However, the performance of AlexNet still remains low
due to huge network traffic generated by it.

They note that transmitting only those gradients that exceed a threshold can reduce network traffic
without harming accuracy. However, it requires “sparse allreduce” which leads to poor network utiliza-
tion. This is because every GPU transmits different gradients and stores/transmits these values in “index-
value” format which is inefficient due to overheads of memory-copy and irregular memory accesses.
Hence, this approach does not improve performance.

Instead, they propose “coarse-grained sparse communication” which is illustrated in Figure 36. Here,
the gradients in the memory pool are partitioned into chunks having the same number (e.g., 32000)
of gradients. After every iteration, a fraction of chunks is chosen as important. Only important chunks
are copied to a buffer, and when the buffer size exceeds a threshold, the (lazy) allreduce operation is
performed. Each GPU selects the same important chunks which allows using NCCL for accumulating
and broadcasting those chunks with high BW usage efficiency. They also use some strategies to avoid
losing accuracy. Combining above optimizations, they obtain 410× speedup on 512 Volta GPUs and train
AlexNet on ImageNet dataset in just 1.5 minutes, while achieving top-1 accuracy of 58.2%.

Fig. 36. “Coarse-grained sparse communication” approach [37]

4.5 Using pipeline-parallel training scheme

Harlap et al. [44] propose “pipeline parallel training” for distributed training of DNNs which brings
together the best of data-parallel, model-parallel training and pipelining. The layers of DNN are divided
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into groups of successive layers, called a chunk. Both FWP and BWP of all the layers in a chunk are
processed by a single GPU, and in this way, different GPUs handle different chunks.

For each minibatch, a GPU performs its FWP for the layers in its chunk and sends it to the next GPU.
The GPU processing the last chunk calculates the loss for the minibatch. Then, every GPU executes BWP
and sends the loss to the GPU processing the previous chunk. With only one minibatch, at most one GPU
is active at a time. To improve utilization, multiple mini-batches are injected in a pipelined manner. After
performing FWP for a minibatch, each GPU asynchronously sends the output activations to the GPU
processing the next chunk and starts processing another mini-batch. Likewise, upon performing BWP for
a minibatch, every GPU asynchronously sends the gradient to the previous GPU and starts processing
another mini-batch.

While the “bulk synchronous parallel” approach requires sending all the parameters of a DNN, their
pipeline-parallel approach requires sending only the output data of one layer. This reduces the volume of
communication significantly. Further, their approach overlaps transmission of forward output activations
and backward gradients with useful computation and also improves GPU utilization efficiency. Their
technique finds partitioning of layers of the DNN on the GPUs for minimizing the training time. Assuming
that all the GPUs are identical, the processing load of each chunk should be similar, and the amount of data
communicated should be minimal. Assuming that the communication and computation time is nearly the
same for different mini-batches, their technique profiles each layer of the DNN on one GPU. Then, it uses
a “dynamic-programming” based algorithm for grouping layers into chunks while also finding out the
replication factor and optimal minibatch count for keeping the pipeline fully-utilized. Figure 37 shows an
example of how their technique may divide layers of a CNN across chunks of eight GPUs.
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Fig. 37. Illustration of pipelined parallel training technique [44] (L1 to L5 are five layers of a CNN)

At any point in time, a GPU can perform either FWP or BWP, and both of them are
important for ensuring forward progress of the training. Their scheduling scheme has a start-
ing phase and a steady phase. In the starting phase, U mini-batches are injected where
U=NumberOfMachines/NumberOfMachinesInFirstStep. In the steady phase, every GPU alternately
executes one FWP pass and one BWP pass for a mini-batch. This avoids GPU idling, as shown in 38(b). By
contrast, the naive pipelined training leads to GPU idling, and this is shown in Figure 38(a).
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Fig. 38. (a) Naive pipelining scheme (b) “Pipelined parallel training” approach of Harlap et al. [44]

An advantage of their technique is that it does not require FWP and BWP phases to take the same
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amount of time. When a chunk is replicated on multiple GPUs, a “round-robin load-balancing” scheme
is used for allocating work from the earlier chunks to the replicas. It allocates BWP of a minibatch to the
same GPU which performed its FWP.

A limitation of the pipelined design is that the FWP and BWP for every minibatch happen with different
parameters. For instance, as shown in Figure 38(b), on machine 2, the FWP for minibatch 5 happens after
applying updates from minibatch 1 and 2, but the BWP for minibatch 5 happens after applying updates
from mini-batches 3 and 4. Hence, due to differences in the weights used, the model may not converge.
Also, the amount of staleness differs in different chunks. Due to these factors, the accuracy of the above
pipelined design is much lower than that of data-parallel training. They propose two schemes to mitigate
these issues: (1) For every active minibatch, a separate version of weights is maintained. The FWP is
performed using the most up-to-date weights available, which are stored, and the same version is used
for performing BWP. Thus, in a chunk, for a minibatch, the same weights are used in both FWP and BWP.
(2) Consistent values of weights are used across the chunks. They note that scheme (1) is important for
meaningful training, but scheme (2) has a negligible impact. Experiments show that their technique incurs
much lower “time-to-accuracy” than the data-parallel training. Also, its benefits are higher in a cluster
which has faster GPU but a slower network.

4.6 Designing schedulers for DL training
DL training involves a trial-and-error approach where multiple configurations of a job are explored, of
which some are aborted or prioritized based on quick feedback. Conventional schedulers do not provide
early feedback on all the jobs since they focus on running some jobs to completion and place other jobs in
waiting queues. Thus, providing exclusive GPU access to some jobs leads to low utilization of GPU and
high latency for other jobs. Further, DL training jobs have varying compute/memory/communication
resource requirements and are impacted differently by these factors. For example, even for the same
number of total GPUs, the number of GPUs per server decides the communication latency, which has a
high impact on the performance of the CNN with larger model size. Similarly, different DL training jobs
show different sensitivity to interference from co-running jobs. DNN training involves multiple mini-batch
iterations, and during every mini-batch, the memory consumption increases during FWP reaches its peak
and then decreases during BWP.

Xiao et al. [38] propose adapting the scheduling technique to DL training workload for improving the
cluster utilization. When multiple training jobs are present, their technique enables time-sharing of GPUs
by incoming jobs by using a suspend-resume scheme. Specifically, when a suspend command is issued,
their technique waits till the memory consumption of the job becomes minimum, transfers the GPU data to
CPU, frees GPU memory and calls the CPU ”suspend scheme.” Later, when the job is to be resumed, GPU
memory is allocated, data is copied from CPU to GPU memory, and the job is resumed. Although waiting
for the memory usage to reach its minimum value may delay the suspend operation by the duration of
a mini-batch interval, it reduces CPU memory utilization and amount of data-transfer. When resumed, a
job may run on a different GPU than the one it was originally running on. As an alternative to suspend-
resume, multiple jobs can be packed and allow GPU to time-share the jobs. The limitation of job-packing
is that it may lead to resource contention and interference between jobs.

Further, they perform job-migration to change the group of GPUs allocated to a training job using
functions that enable automatic checkpointing and restoration of a model. The migration overhead can be
reduced by warming up the destination before migration, and only moving the required training context.
Migration enables the use of idle GPUs or consolidating jobs on few GPUs to achieve de-fragmentation.

Finally, their technique increases the number of GPUs allotted to a job at a high amount of load and
vice versa. Based on the periodicity of training jobs, profiling is done to find the impact of a scheduling
decision on mini-batch progress speed. Based on this, for example, the GPUs allocated to those jobs can
be increased that show rising performance with an increasing number of GPUs. Their technique improves
cluster utilization and reduces time to early feedback.

4.7 Using transient servers in the cloud for reducing the financial cost of training
Cloud providers offer two kinds of servers: on-demand that remain available until they are released by
the customer and transient that may be revoked anytime by the cloud provider. Transient servers are
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offered as preemptible VMs (virtual machines), and spot instances and are as much as 90% cheaper than
the dedicated servers[30]. In the “Google compute engine”, the maximum lifetime of a transient server is
24 hours. In general, different cloud providers have different policies governing the lifetime of transient
servers.

Li et al. [30] note that distributed deep learning incurs significant overheads and financial costs due to
sublinear scaling. They propose use of transient servers to mitigate these costs. They note that distributed
training on transient servers provides comparable accuracy and speed like that on on-demand servers
while providing significant monetary savings. Also, compared to training on a single-GPU, distributed
training on transient servers provides speedup and cost saving with an only small loss in accuracy. The
loss in accuracy comes due to the use of stale parameters in distributed asynchronous training. A training
cluster is adjudged to be a failure if the master worker gets revoked before completion of training. Hence,
they propose redesigning existing distributed training frameworks so they can continue to work even if
the master server, which performs checkpointing, fails.

They note that revoking of servers has a minor impact on accuracy and cost. The increase in training
time due to revoking of servers can be mitigated by using a larger cluster. They further study whether
within a fixed budget of training, using a more powerful GPU (e.g., P100 or V100) or using a cluster
of GPUs provides any benefit over using an on-demand K80 GPU. They observe that the use of more
powerful GPU increases vulnerability to server revocations whereas the use of GPU cluster improves the
speed at the cost of accuracy. Overall, the use of four GPUs provides a balance between training speedup
and accuracy loss.

Clusters with a large number of transient servers are more resilient to revocations since every server
performs less amount of work in a large cluster and hence, the loss of time due to its revocation is
lower. Apart from the number of revocations, the timing of revocations also has a crucial impact on the
cost and training time. They also study heterogeneous training, which uses GPUs of different types (e.g.,
K80 and V100) or GPUs located at different geographical locations. On using GPU servers located in
the same data-center, the saving in cost is nearly proportional to the slowdown. By comparison, using
servers at geographically-different locations leads to huge slowdown since the communication between
GPU workers and parameter-server happens over a slow network connection.

4.8 Comparison with CPU/Phi
Awan et al. [25] compare single-node and multi-node training using CPU, Phi, and GPU. They use
Intel-Caffe and NVIDIA-Caffe for CPU/Phi and GPU, respectively. They find that compared to default
Caffe, use of MKL2017 engine in Caffe improves the performance of CPU greatly, and the performance
improvement in Phi is even higher. Then, they compare the three memory modes of Knights Landing
(KNL): (1) use of “multi-channel DRAM” (MCDRAM) as L3 cache and (2) allocating entire data in DDR-
memory or (3) MCDRAM memory. Of these, option (1) provides the highest performance and hence, is
used for subsequent experiments.

They further compare overall training time of AlexNet and ResNet and find that MKL2017-optimized
Broadwell CPU and KNL Phi provide much higher performance than K40 and K80 GPUs. KNL Phi
provides comparable performance as P100 GPU, which outperform Broadwell and Haswell CPUs. On
studying the time taken by individual layers, they find that FC layers and most CONV layers run faster
on P100 than on KNL, whereas one CONV layer runs faster on KNL.

For multi-node training using CPU, they use Intel-Caffe which uses MPI via “Intel Machine Learning
Scaling Library” (MLSL). Since NVIDIA-Caffe itself does not provide support for multi-node training,
they use OSU-Caffe, which is built on top of NVIDIA-Caffe. On moving from one to two nodes, Intel-
Caffe shows a sudden increase in training time due to communication overheads. OSU-Caffe does not
show such a sharp increase. The throughput increases with the increasing number of nodes, and the
throughput of OSU-Caffe remains higher than that of Intel-Caffe.

5 CONCLUDING REMARKS

This paper reviewed the techniques for accelerating DL applications on GPUs. We discussed the works that
use GPUs for both training and inference, in both single-system and distributed systems. We organized
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the work based on key parameters for bringing out their similarities and differences. We close this paper
with a discussion of future challenges.

In the last nine years, the compute performance of GPU has increased by 32 times, but the memory
bandwidth has increased by 13 times only [31]. On the other hand, memory-requirements of DNNs are
growing at a rapid pace. Evidently, data-movement is likely to become the bottleneck in training and
testing of DNNs on GPUs in the future. Going forward, substantial improvements in memory capacity
and bandwidth are required for keeping GPUs a platform of choice for large-sized DNNs. This may
require using novel approaches, for instance, emerging non-volatile memories and computing-in-memory
approach [73, 74]. Similarly, data-movement overheads can be reduced using data-encoding techniques
[75].

Most works have evaluated optimization techniques such as pruning, tiling, suitable data-layout, etc. in
isolation. Since in real-life applications, these techniques will be used in conjunction, a thorough evaluation
is required to ensure that these techniques integrate synergistically. A crucial challenge in the use of
GPUs is their large power consumption [65], which obstructs their use in power-constrained application
scenarios such as autonomous driving. However, nearly all the works have ignored the evaluation of
the energy efficiency of their solutions. Future works need to evaluate the performance benefits of their
techniques, vis-a-vis their energy overheads. Future works also need to evaluate recent GPU models (e.g.,
Volta and Turing) and low/mixed-precision techniques for achieving high efficiency.

In recent years, several custom-made AI accelerators such as Google’s tensor processing unit (TPU)
have been introduced in the market. While the general-purpose nature of GPU makes it useful for a broad
range of applications, it also precludes thorough optimization of GPU architecture for AI applications. It
remains to be seen whether the future trajectory of GPU architecture will see revolutionary or evolutionary
changes [76]. It will be also interesting to see how well the next-generation GPU strikes a balance between
the conflicting goals of special-purpose and general-purpose computing, and how well it competes with
the other AI accelerators [77–79].

As CNNs become progressively used in mission-critical applications, ensuring their security has
become important. However, GPUs do not guarantee a trusted execution environment and have many
security vulnerabilities [80]. Further, outsourcing DNN’s training on GPUs in remote clouds increases the
vulnerability to attacks. Moving forward, security concerns need to be addressed in the design of both
CNNs and GPUs as the first principle, instead of retrofitting for it.
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[53] V. Campos, F. Sastre, M. Yagües, J. Torres, and X. Giró-i Nieto, “Scaling a convolutional neural network for classification
of adjective noun pairs with TensorFlow on GPU clusters,” in International Symposium on Cluster, Cloud and Grid Computing
(CCGRID), 2017, pp. 677–682.

[54] Z. Jia, M. Zaharia, and A. Aiken, “Beyond data and model parallelism for deep neural networks,” arXiv preprint
arXiv:1807.05358, 2018.

[55] Y. You, Z. Zhang, C.-J. Hsieh, J. Demmel, and K. Keutzer, “ImageNet training in minutes,” in International Conference on
Parallel Processing, 2018, p. 1.

[56] N. Dryden, N. Maruyama, T. Moon, T. Benson, A. Yoo, M. Snir, and B. Van Essen, “Aluminum: An Asynchronous, GPU-
Aware Communication Library Optimized for Large-Scale Training of Deep Neural Networks on HPC Systems,” Lawrence
Livermore National Lab.(LLNL), Livermore, CA (United States), Tech. Rep., 2018.

[57] J. Guo, W. Liu, W. Wang, Q. Lu, S. Hu, J. Han, and R. Li, “AccUDNN: A GPU Memory Efficient Accelerator for Training
Ultra-deep Deep Neural Networks,” arXiv preprint arXiv:1901.06773, 2019.

[58] N. R. Tallent, N. A. Gawande, C. Siegel, A. Vishnu, and A. Hoisie, “Evaluating on-node GPU interconnects for deep learning
workloads,” in International Workshop on Performance Modeling, Benchmarking and Simulation of High Performance Computer
Systems. Springer, 2017, pp. 3–21.

[59] K. Zhou, G. Tan, X. Zhang, C. Wang, and N. Sun, “A performance analysis framework for exploiting GPU microarchitectural
capability,” in International Conference on Supercomputing, 2017, p. 15.

[60] A. Abdelfattah, A. Haidar, S. Tomov, and J. Dongarra, “Novel HPC techniques to batch execution of many variable size BLAS
computations on GPUs,” in International Conference on Supercomputing, 2017, p. 5.

[61] M. Jorda, P. Valero-Lara, and A. J. Peña, “Performance Evaluation of cuDNN Convolution Algorithms on NVIDIA Volta
GPUs,” IEEE Access, 2019.

[62] Z. Jia, M. Maggioni, B. Staiger, and D. P. Scarpazza, “Dissecting the NVIDIA Volta GPU architecture via microbenchmarking,”
arXiv preprint arXiv:1804.06826, 2018.

[63] M. Zhang, S. Rajbhandari, W. Wang, and Y. He, “DeepCPU: Serving RNN-based deep learning models 10x faster,” in USENIX
ATC, 2018, pp. 951–965.

[64] S. Mittal and J. Vetter, “A Survey of CPU-GPU Heterogeneous Computing Techniques,” ACM Computing Surveys, vol. 47,
no. 4, pp. 69:1–69:35, 2015.

[65] S. Mittal and J. S. Vetter, “A Survey of Methods for Analyzing and Improving GPU Energy Efficiency,” ACM Computing
Surveys, vol. 47, no. 2, pp. 19:1–19:23, 2015.

[66] T. Chen, T. Moreau, Z. Jiang, L. Zheng, E. Yan, H. Shen, M. Cowan, L. Wang, Y. Hu, L. Ceze et al., “TVM: An automated end-
to-end optimizing compiler for deep learning,” in 13th USENIX Symposium on Operating Systems Design and Implementation
(OSDI), 2018, pp. 578–594.

[67] S. Mittal, “A Survey of FPGA-based Accelerators for Convolutional Neural Networks,” Neural computing and applications,
2018.

[68] L. Meng and J. Brothers, “Efficient Winograd Convolution via Integer Arithmetic,” arXiv preprint arXiv:1901.01965, 2019.
[69] A. Abdelfattah, A. Haidar, S. Tomov, and J. Dongarra, “Performance, design, and autotuning of batched GEMM for GPUs,”

in International Conference on High Performance Computing, 2016, pp. 21–38.
[70] T. Ben-Nun and T. Hoefler, “Demystifying parallel and distributed deep learning: An in-depth concurrency analysis,” arXiv

preprint arXiv:1802.09941, 2018.
[71] S. Mittal, “A survey of techniques for approximate computing,” ACM Computing Surveys, vol. 48, no. 4, pp. 62:1–62:33, 2016.
[72] A. Coates, B. Huval, T. Wang, D. Wu, B. Catanzaro, and N. Andrew, “Deep learning with COTS HPC systems,” in International

conference on machine learning, 2013, pp. 1337–1345.
[73] S. Umesh and S. Mittal, “A survey of spintronic architectures for processing-in-memory and neural networks,” Journal of

Systems Architecture, vol. 97, pp. 349 – 372, 2018.
[74] S. Mittal, “A survey on applications and architectural-optimizations of micron’s automata processor,” Journal of Systems

Architecture, vol. 98, pp. 135 – 164, 2019.
[75] S. Mittal and S. Nag, “A survey of encoding techniques for reducing data-movement energy,” Journal of Systems Architecture,



45

vol. 97, pp. 373 – 396, 2018.
[76] S. Shead, “Nvidia’s got a cunning plan to keep powering the AI revolution,” https://www.wired.co.uk/article/

nvidia-artificial-intelligence-gpu, 2019.
[77] M. Wielomski, “The GPU: Powering The Future of Machine Learning and AI,” https://phoenixnap.com/blog/

future-gpu-machine-learning-ai, 2018.
[78] A. Sharma, “GPU Vs CPU: The Future Think-Tanks Of AI,” https://www.analyticsindiamag.com/

gpu-vs-cpu-future-think-tanks-ai/, 2018.
[79] G. Anadiotis, “AI chips for big data and machine learning: GPUs, FPGAs, and hard choices in the cloud and on-premise,”

https://www.zdnet.com/article/ai-chips-for-big-data-and-machine-learning-gpus-fpgas-and-hard-choices-in-the-cloud-and-on-premise/,
2018.

[80] S. Mittal, S. B. Abhinaya, M. Reddy, and I. Ali, “A Survey of Techniques for Improving Security of GPUs,” Hardware and
Systems Security Journal, vol. 2, no. 3, pp. 266–285, 2018.

View publication statsView publication stats

https://www.researchgate.net/publication/335292390

